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Abstract

Wave propagation in orthotropic layered composite media due to high frequency impact loading is studied using a
new spectral layer element (SLE). This novel element is formulated using the method of partial wave techniques (PWT)
in conjunction with linear algebraic methodology. The matrix structure of finite element (FE) formulation is retained,
which substantially simplifies the modeling of multi-layered structure. The developed SLE has an exact dynamic
stiffness matrix, as it uses exact solution to the governing elastodynamic equation in frequency domain as its inter-
polation function. Due to this, the mass distribution is modeled exactly, and as a result, the element gives exact fre-
quency response of each layer. Hence, one element may be as large as one complete layer and as a result system size is
very small compared to conventional FE system sizes. The fast-Fourier transform (FFT) and Fourier series are used for
inversion to the time/space domain. The formulated element is further used to study the stress distribution in a multi-
layered media. As a natural application, Lamb wave propagation in composite plate is studied for different ply-angle
and time domain description is obtained. Further, advantage of the spectral formulation in impulse force identification
is demonstrated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Layered media are encountered in various natural (soil, wood, tissue, etc.) and artificial (bi-material,
fibre reinforced composite, graded materials etc.) structural systems. All these systems are prone to dynamic
loads and most often, high frequency impact loads, in their lifetime. Hence, analysis for these layered
systems for impact loading is important and requires critical attention because of the following reasons.

It is quite well known that layered composite structures have low impact resistance. The impact resis-
tance depends on the ply layup, its orientation and also on the material properties of the composite layer.
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For efficiently designing the composite structures for impact loading, it is necessary to know the high
frequency behavior of the structure.

Analysis of structures subjected to impact load (a load of very small duration compared to the natural
time periods of the system) by conventional FE analysis is difficult because of restricted computational
resources. This is because, for accurate prediction, the element sizes should be of the order of the wave-
length (Kuhlemeyer and Lysmer, 1973), which is very small (since the frequency is high) and thus the cost of
computation becomes enormous. Added to that is the dimension of the structure, which may be very large
if e.g., a soil strata. Another way of viewing this problem is: since the energy content of the load is very
high, myriad modes will get excited and unless sufficient number of elements is used the higher order mode
shapes will not be captured properly and hence there will be loss of accuracy. Hence, conventional time
domain FE method is computationally prohibitive for such problems. This takes us to the realm of fre-
quency domain analysis and in particular, Spectral analysis.

Spectral analysis, as outlined by Chatfield (1984), is the synthesis of waveforms from the superposition of
many frequency components, has been developed as a method based on matrix methodology by Doyle
(1997), which is called the spectral finite element method (SFEM). As in conventional FE method, in
SFEM, the nodal displacements are related to nodal forces through a frequency dependent dynamic
stiffness matrix. The matrix-vector equation is solved for each frequency and quantities of interest are
transformed back to time domain through inverse fast Fourier transform. Primary works in one dimen-
sional waveguides can be found in Doyle (1988) and Doyle and Farris (1990). Wave propagation in
multiply connected one dimensional higher order isotropic wave guides was studied by Gopalakrishnan
et al. (1992) and Martin et al. (1994). In the area of composites, the SFEM is used to develop Euler—
Bernoulli beam (Roy Mahapatra et al., 2000) and Timoshenko beam (Roy Mahapatra and Gopalakrish-
nan, 2003a), beam with embedded delamination (Nag et al., 2003) and composite tubes (Roy Mahapatra
and Gopalakrishnan, 2003b).

Spectral element (SE) for 2D model is formulated by following the same procedures as in 1D case, where
interfacial displacements are related to interfacial tractions through frequency dependent stiffness matrix.
However, the stiffness needs to be established in frequency and wavenumber domain, where the later can be
thought of as spatial frequency. Contribution from distributed mass can be represented exactly and con-
sequently, elements need not to be small, and they can extend from one interface to another. Spectral
element for isotropic layered solids was formulated by Rizzi (1989) and Rizzi and Doyle (1989, 1991).
Further, 2D isotropic plates and shells were analyzed by Doyle (1997). A spectral element for inhomo-
geneous layered media was developed Chakraborty and Gopalakrishnan (2003), where an approximate
spectrum relation was established.

There are few other works where wave propagation in layered media was treated in a slightly different
way. A matrix formulation for the propagation of plane elastic waves through a stratified medium was first
developed by Thomson (1950) and Haskell (1953). It relates the displacements and loads at one interface to
those at another through a propagator matrix. Further development of the method, including the ability to
handle generally crested waves and a discrete form of the inversion procedures, are summarized by Kennett
(1983).

The limitations of the SLE formulation of Rizzi and Doyle (1991), is that Helmholtz decomposition of
the displacement field in terms of a scalar and vector potential is required, apriori. There is an advantage in
the decomposition. It uncouples the governing Navier’s equation and generates two Helmholtz equations in
terms of scalar and vector potential, which are solvable readily. Solution for the displacement field is then
obtained from these two exact solutions and the element is formulated. But for anisotropic materials and
other structural approximations like plates and shells, finding the potential itself is a difficult task and even
if it is found, they may not uncouple the governing equations (Rose, 1999). Hence, the formulation must be
carried out without any knowledge of the potentials. There is another important distinction between iso-
tropic and anisotropic media. In isotropic materials, only pure modes (longitudinal and shear) are possible,
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1.e., polarization vector is either parallel or normal to the propagation direction. However, for anisotropic
media, pure modes can occur for some propagation directions depending upon the degree of symmetry of
the material under consideration (Nayfeh, 1995). Another definition of pure modes given by Solie and Auld
(1973) states that when propagation direction coincides with the direction of energy flow, the modes of
propagation are pure modes. This kind of wave also occurs in anisotropic material only under certain
material symmetry condition. For this reason, the waves in anisotropic materials are named quasi-longi-
tudinal (QP) wave and quasi-shear waves (QSH and QSV), to differentiate from their isotropic counter-
parts. The most exhaustive treatment of wave propagation in layered composite media is given by Nayfeh
(1995). Further discussion on this subject can be found in Rose (1999). Other than these two books, the
literature on wave propagation in laminates due to low-velocity impact is limited in numbers, mostly
studied by Mal and Lih (1992) and Lih and Mal (1992, 1995, 1996) and Mal (2002). Further, wave
propagation in composite laminate for anti-plane loading was studied by Ma and Huang (1995), where
closed form expressions were found for displacements and stresses.

The most general method of treating the propagation of elastic waves in anisotropic media is the partial
wave technique (PWT) (Solie and Auld, 1973). The essence of the technique is to satisfy the governing
equation and the appropriate boundary conditions by taking a superposition of two upward traveling plane
wave modes (i.e., one quasi-longitudinal and one quasi-shear) and two downward traveling plane wave
modes. Each of the four waves (six in three dimension) is termed as partial wave because they all combine
to give a single guided wave mode of the layer. As the partial waves satisfy the governing equation indi-
vidually, any linear combination of these waves also satisfy the governing equation (since the equation is
homogeneous). The coefficients of this waves must be chosen to ensure that the appropriate boundary
conditions are satisfied at the upper and lower surface of the layer.

So far, we see that all the works on the development of the SE for composite material are confined to 1D
structures and no element exists for the analysis of wave propagation in composite layered media. In this
work, a SE is formulated for general anisotropic layer, where, in the element formulation, we propose a
simplified way of finding the wavenumbers and wave amplitudes numerically, which together construct the
partial waves. As all the four wavenumbers are computed at a time, as opposed to the other methods (Roy
Mahapatra et al., 2000; Roy Mahapatra and Gopalakrishnan, 2003a,b), there is no way to identify the
different modes. While deriving the stiffness matrix it is an added advantage if the modes can be identified.
However, in the present formulation, the knowledge of the modes is not essential. Once the partial waves
are found, the wave coefficients are obtained for general stressed boundary conditions, i.e., two non-zero
tractions are specified at the top and bottom of the layer. Here, it differs from other formulation based on
the PWT, as no specific problem oriented boundary conditions are imposed. Thus a system matrix is
established, which relates the tractions at the interface to interfacial displacements. This generalization
enables the use of the system matrix as a finite element dynamic stiffness matrix, although formulated in
frequency/wavenumber domain. These matrices can be assembled to model different layer of different ply-
orientation, which obviates the necessity of cumbersome computation associated with multi-layer analysis,
(e.g., Rose, 1999). The advantage of the present formulation in association with the PWT is in its appli-
cation to construct element stiffness matrix for a wide range of structures (like plates and shells) and
materials (inhomogeneous and viscoelastic). In particular viscoelastic layers can be analyzed in much more
comfortable way compared to FE analysis, as the whole formulation is done in frequency domain.
However, in the present manuscript, we have restricted ourselves to elastic anisotropic materials.

Another advantage of the present formulation is the ease in capturing the Lamb wave (Viktorov, 1967)
propagation in anisotropic plate. By definition the Lamb waves are guided waves propagating in a domain
bounded by two parallel traction-free surfaces. The importance of Lamb waves in NDE applications lies in
its ability to inspect large areas at a time by propagating long distance without attenuation. Hence, they
find immense application in structural health monitoring. Historically, dispersion relation (phase velocity—
frequency relation) for anisotropic materials was given first by Solie and Auld (1973), where partial wave
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techniques were used. However, the relation was obtained for a (00 1)-cut copper plate. Subsequent
investigations on modeling aspects of Lamb waves were carried out by several researchers (Nayfeh, 1995).
Finite Element modeling of Lamb waves was performed by Verdict et al. (1996). On the basis of discrete
layer theory and multiple integral transform an analytical-numerical approach is given by Veidt et al.
(2002). A coupled FE-normal mode expansion method is given by Moulin et al. (2000). Similarly Boundary
Element-normal mode expansion method is given by Zhao and Rose (2003). The present formulation by
virtue of frequency-wavenumber domain representation of solution is an inexpensive way of constructing
the Lamb wave modes as well as predicting time domain signals.

Another important issue related to composite material is solving inverse problems, in particular, material
and force identification. To the best of authors’ knowledge, there are very few works reported on force
reconstruction in composite structures. The present element is suitable for force identification because the
frequency response function (FRF) of the modeled system, is a direct by-product of the SE procedure. The
convenience and versatility of SE in conjunction with experimental data was demonstrated earlier to predict
force history in mono-material beam (Doyle, 1984), bi-material beam (Doyle, 1993), isotropic plates
(Doyle, 1987a), orthotropic plates (Doyle, 1987b), isotropic layered media (Rizzi and Doyle, 1991) and
inhomogeneous layered media (Chakraborty and Gopalakrishnan, 2003, submitted).

There are many instances, where cost of a prototype or difficulty in obtaining a suitable physical model
for impact testing preclude any experimental evaluation and numerical simulation becomes the only option
for parameter estimation. Also, several difficulties are associated with wave propagation experiments
performed over a finite length models in terms of noises and boundary reflections. For accurate force
prediction, complete trace of the measured signal is required. The experimentally generated signal required
to be truncated at some point. Choosing the point of truncation requires critical consideration since
valuable information may be lost in pre-mature truncation. For dispersive system, in particular, caution
should be exercised in selection of this truncation points, as the wave response will not die down completely
within the chosen time window. In earlier works on inhomogeneous plate (Chakraborty and Gopala-
krishnan, 2003, submitted), FE responses were taken as surrogate experimental results. Since experimental
outputs are always truncated at some point depending upon the constraints of the set-up, data acquisition
system and other facilities, the FE response should be taken such that it simulates closely the experimental
results. When this truncated response is given as input to the SE solver, the force data can be reconstructed
by performing inverse analysis. The same idea is used in this work to identify the applied impact force from
the FE responses.

The manuscript is organised as follows. In Section 2, detail of the SLE formulation is given. In Section 3,
several numerical examples are discussed. First, the efficiency and accuracy of the present element is
demonstrated. Next, stress waves in layered media is investigated. Next, Lamb waves in anisotropic layered
media are captured. Finally, applied impact force is reconstructed from FE signal. In Section 4, conclusions
are drawn.

2. Spectral layer element formulation

It is assumed that there is no heat conduction in and out of the system, displacements are small, material
is homogeneous and anisotropic and the domain is in two dimensional (2D) Euclidean space. The general
elastodynamic equation of motion for three dimension is given by

Oijj = pii;, 0ij = Cijki€i,  €ij = (ui,j + Mj,i)/2~ (1)

For 2D model with orthotropic material construction, complexity of the above equation can be further
reduced by the following assumptions. The non-zero displacements are u; = u and u3 = w in the direction
x1 = x and x3 = z, respectively. The non-zero strains are related to these displacements by
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€ = Ux, €z =W, €=U + Wy (2)
The non-zero stresses are related to these strains by the relation

Oxx = Ql]exx + QlSezz; 0 = Q13€xx + Q336227 Oxz; = QSSexza (3)
where Qy;s are the stiffness coefficients, which depend on the ply layup and its orientation. The expressions
of Qs are given in Reddy (1996). Substituting these stresses in the governing equation the elastodynamic
equation for 2D orthotropic media is

Oty + (Q13 + Oss )Wy + Ossitz. = pi,

OssWie + (13 + Oss )ty + Ozwz. = piv.

The displacement field is assumed to be a synthesis of frequency and wavenumbers, both horizontal and
vertical, as

MLZJ>=Nlgfﬁ@ﬂm,wa{sm““x)}éwx (5)

cos (17,,x)

)

n=1 m=1

w(x,z, 1) = Z_: Z_W@ ﬂm,wn){ cos(1,,x) }ej“’"’, "

n=1 m=l1 Sin(nmx)

where w, is the discrete angular frequency, 1, is the discrete horizontal wavenumber and #=-1.The X
dependency of the displacement field (sine or cosine) will be determined based upon the loading pattern.
For loads having symmetric distribution about Z axis, sine function for u and cosine function for w are to be
chosen. In all subsequent formulation and computation, symmetric load pattern will be considered. Dis-
crete values of 5,, depend upon the X window length and number of mode shapes (M) chosen. In what
follows, boldface uppercase and lowercase letters denote matrices and vectors, respectively.

To get the expression for ii(z) and Ww(z), Egs. (5) and (6) need to be substituted in Eq. (4), which results in
two ordinary differential equations (ODEs) for #(z) and w(z) in which w, and 5, will be present as
parameters. The equation in matrix vector notation is

A+ B + Ca=0, a={i i}, (7
where prime denotes differentiation with respect to z. The matrices A, B and C are
Oss 0 } [ 0 —(O13 + Oss)n
A == 5 B = m , 8
[ 0 Os (O13 + Oss)n,, 0 (8)
2 2
_ | =m,9n + po, 0
€= [ 0 —11,Oss + pwi} ' )

For homogeneous material these ODEs are of constant coefficients and solutions are in the form of
upe % and woe ¥ where uy, wy and k, the vertical (Z direction) wavenumbers, are unknowns. Substituting
these solutions in Eq. (7), the problem becomes of finding non-trivial ug, wy from the equation

W{u} =0, W=—kA—jkB+C, {u}={upwo}, (10)

where W is called the wave matrix. As we are interested in non-trivial values of u,, the wave matrix must be
singular, i.e., determinant of the matrix must be zero, which is the required condition for finding the
wavenumber k. The wave matrix in explicit form is

W — _kZQ55 —11,0n + po, Jkn,, (015 + Oss) (n
—jkn,,(O13 + Oss) —k*Q33 — 13,055 + pwy |
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The singularity condition of W yields

033055k + {(01033 — 2013055 — QL)% — p(Oss + Oss) }i
+ {01 Ossty, — pary (On + Oss) + p*w,} = 0. (12)

The above equation which relates vertical wavenumber k to the horizontal wavenumber # and frequency
is called the spectrum relation. It is to be noted that for each value of #,, and w,, there are four values of £,
denoted by k.., = 1,...,4, which will be obtained by solving the spectrum relation. Explicit solution of

the wavenumber k is k,,, = £V —b £ Vb?> — dac, where a, b and c are the coefficients of k*, k% and k°,
respectively, in Eq. (12).

There are certain properties of the wavenumbers which will be explored now. As can be seen from Eq.
(12), for n,, = 0, the equation is readily solvable to give the roots +w+/p/Q3; and +w+/p/Qss. Since, none
of the p, 033 or Oss can be negative or zero, these roots are always real and linear with w. When #,, is not
zero, k becomes zero for w satisfying

OnOssit, — pari(On + Oss) + p*ol =0,
ie., (Qum, — pa?)(Qssi,, — par’) =0, (13)

ie., o =n,/Ou/p, N,/ 0Oss/p.

Before these frequencies, the roots are imaginary and non-propagating and after these frequencies, the
roots are real and propagating. These frequencies are called cut-off frequencies. For isotropic materials they
are given by c,n and c¢,n (Rizzi, 1989). The current expressions for cut-off frequencies are also reducible to
that of isotropic materials if we identify O, and Qss with A4 + 2u and g, respectively, where 4 and u are the
Lame’s parameters. If we identify QP wave with Qs; (or Q;;) and QSV wave with QOss, then as the cut-off
frequencies suggest, for the same value of 5, it is the QSV wave that becomes propagating first, since
011 > Oss. The wavenumbers of positive roots denote forward propagating modes and the negative roots
denote backward propagating modes. In Fig. 1, the wavenumbers are plotted for three different ply-angles,
0°, 45° and 90°. For all the ply-angles, Os; and QOss are assumed 9.69 GPa and 4.13 GPa, respectively. For

80
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Fig. 1. Variation of wavenumber with w, (n,, = 10).
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011 and Q;;, following values are assumed. For 0°, Q;; = 146.3 GPa and Q;; =2.98 GPa, for 45°,
01 =44.62 GPa and Q3 = 1.62 GPa and for 90°, O;; = 9.69 GPa and Q,; = 2.54 GPa. In Fig. 1, imag-
inary part of the wavenumbers is plotted in horizontal plane and real part in the vertical plane. Further, the
imaginary part of the wavenumbers for 0° and 90° are plotted in the positive side, whereas for 45° it is
plotted in the negative side, for distinction. Two different #,, values are taken. The linear variation of the
real part of the wavenumbers are for #,, = 0 and rest of the plots are for #,, = 10. As discussed previously,
slope of the linear portion depends upon Q33 and QOss and as they are equal for all the ply-angles, this part is
common for all the ply-angles. The difference comes in the imaginary part and cut-off frequencies. Two
different cut-off frequencies are seen in the figure for each ply-angle, where the largest value is for 0° ply-
angle because of its largest Qy;. Further, the shear cut-off frequency is same for all the ply-angles as QOss is
equal in all the cases.

Once, the required wavenumbers £ are obtained, for which the wave matrix W is singular, we can
evaluate uy through the solution of

{53 } - Z {;fj }eW (14)

Above expression involves a total of 8 constants. However, they are inter-dependent and only four
independent constants exist. This can be seen by substituting the solution in Eq. (10), which yields
WA, + WiB, =0, or, Wy A, + W»nB, = 0. Since, for the solved values of the wavenumber &, the wave
matrix is singular, these two conditions are not linearly independent, and anyone of the two conditions can
be used to express one of the constants in terms of the another. However, in doing so, it should be known
apriori, which elements of the wave matrix are not zero. Only those elements can be used as denominators
while establishing the relation. This approach is followed in more recent works (Roy Mahapatra et al.,
2000; Roy Mahapatra and Gopalakrishnan, 2003a,b) in formulating one dimensional elements. However,
for more complicated problems involving more than three variables (as to be encountered in plates and
shells), the method becomes very tedious and some alternative is necessary. It is to be noted that for iso-
tropic materials this problem does not arise at all because of the introduction of Helmholtz decomposition.

In short, for problems with more than two independent variables, a different procedure is necessary. We
propose here a formulation technique which will be a general one, applicable to any structural systems with
no Helmholtz decomposition. Here, the displacement field for the frequency w, and wavenumber #,, is
written as

U = R11Cre 1 4+ R13Cre 0 + Ri3Cye ™ Ry, Cue i, (15)

Wom = Ra1 C1e % 4 Ryy Cre % 4 Ry Cie 0% 4 Ryy Cye ™0, (16)

where R;; are amplitude coefficients to be determined and they are called wave amplitudes. In the works of
Roy Mahapatra et al. (2000) and Roy Mahapatra and Gopalakrishnan (2003a,b), the wave amplitudes
are obtained by using the wave matrix W. As outlined earlier, for isotropic material (Rizzi and Doyle,
1991), R; s are explicitly known. However, for anisotropic material they are to be computed numerically.

For each wavenumber %;,, (i = 1,...,4), the ith column of the wave amplitude matrix R, satisfy
Ry; _Jo
since none of the constants C;,i = 1,...,4, is zero. Eq. (17) suggests where to look for the elements of the

wave amplitude matrix. They are exactly the elements of the null space of W. Since, W(k;,,) is singular for
each k;,,, the null space of each W(k;,,) has a non-trivial element and that will serve the purpose of the ith
column of R.
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To find the element of the null space of W, singular value decomposition (SVD) can be utilized which
states that, for any rectangular matrix A of complex entries (Golub and Loan van, 1996), there exist unitary
matrices U and V and diagonal matrix S, such that A = USV", where ()H denotes Hermitian conjugate.
The entries of S are the singular values. The most important property of these unitary matrices that is useful
here is that the columns of V that correspond to zero singular values (zero diagonal elements of S) are
elements of basis of the null space of A. Since, all we need is an element of the null space we can as well take
the elements of the basis itself. Utilizing this fact, SVD of W is performed for each value of k;,,,, ®, and #,,
to get R,

Once the four wavenumbers and wave amplitudes are known, the four partial waves can be constructed
and the displacement field can be written as a linear combination of the partial waves. Each partial wave is
given by

o u; _ Rli —jkiz Sin('/lmx) joont s
a’_{wi}_{Rzi}e {cos(nmx) ol i=1,...,4, (18)

and the total solution is

4
u= Z Cia,- (19)
i=1

It is evident that this method is applicable for wave matrix of any size and thus suitable for plate and shell
formulation. There is another advantage of this method. If the spectrum relation is solved using companion
matrix method, then it is not possible to keep track of the each individual wavenumbers and R matrix
formulation by methods proposed by Roy Mahapatra et al. (2000) and Roy Mahapatra and Gopala-
krishnan (2003a,b), fails. In the present method, there is no need to keep track of each individual wave-
number. As the element of the null space is computed numerically, rather than analytically, there is no need
to check for the non-trivial elements of wave matrix.

2.1. Finite Layer Element (FLE)

Once the solutions of # and w are obtained in the form of Eqgs. (15) and (16) for each value of w, and 5,,,
the shape functions required for element formulation can be formed in the following way. The solution of
U, and w,, (Egs. (15) and (16)) contains four independent constants (C;) which are to be replaced by the
nodal displacements of node 1 and node 2, i.e., #1,,, Wium, Uzum and wa,,,. For that, the expressions of u,,, and
w., are evaluated at node 1 (z=0) and node 2 (z= L) and equated to the nodal displacements. This
operation yields a relation between nodal displacements and the constants C; as

{ulnm Ulnm Udnm U2nm} B = [Tlnm] {Cl C2 C3 C4}T, (20)
1e.,

{u},, = M, {C},,, (1)

where {}T denotes transpose of a vector. The matrix Ty,, consists of the elements of R, suitably multi-
plied by el i=1,...,4, which physically is the matrix of coordinate transformation between the
generalized coordinate and the physical coordinate system.

The elements are essentially edge elements and tractions are specified at node 1 and node 2, as shown in
Fig. 2. The tractions are balanced by the internal stresses at the surfaces by Cauchey’s principle which
states, {t} = [6]{n}, t is the vector of surface tractions, [6] is the Cauchey’s stress matrix and {n} is the
vector of surface normals. As the edge 1 and 2 are normal to the Z axis, the surface normals at node 1 and 2
are given as {0, F1}, respectively, which in turn states that, at node 1, traction in the direction of X, ¢, is
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T
1

—_—t—> X1

(b)

Fig. 2. Sign conventions of (a) throw-off spectral element and (b) layer element.

—o0,. and traction in the direction of Z, ¢., is —o.. and at node 2, ¢, = o,. and . = o... Relation between the
normal stress o,, and shear stress o, to the strains, and in turn, to the displacements can be established by
substituting Eq. (2) in Eq. (3), which yields

Oxy = Ql]ux + Q13W27 Oz = Q13ux + Q33Wzv Oy, = QSS (uz + Wx)7 (22)

Substituting Eqs. (15) and (16) in Eq. (22), the stresses can be related to the unknown constants C;. If the
traction—stress relation is utilized and the tractions are evaluated at node 1 and node 2, then a relation is
established between tractions at node 1 and 2, t = {¢,1, %1, 2, %2} and the unknown constants C, as

{t},, = [T2],,{C},,. (23)

Explicit forms of T,,, and Ty,, are given in Appendix A (Egs. (A.1) and (A.2), respectively). Using Egs.
(21) and (23), nodal traction t,, can be related to the nodal displacement ,,, as

{8}, = [T, [T],,, {0} = (K], {a},,, (24)

where K, is the (4x4) element stiffness matrix for w, and 1,,. It is important to note that, this matrix
represents the dynamics of a whole layer of any length L at frequency w, and horizontal wavenumber 7,,.
Consequently, this small matrix of size 4x4, acts as a substitute of the global stiffness matrix of FE
modeling, which in general, will be of much larger size, depending upon the thickness of the layer.

2.2. Infinite Layer Element (ILE)

While formulating the FLE, both forward and backward propagating waves are considered. However,
another element can be computed where only the forward propagating waves are considered which means
no reflection will come back from the boundary. This element is also called throw-off element (as it acts as a
conduit to throw away energy from the system) and is very effective in modeling infinite domain in Z
directions. This element is also used to impose absorbing boundary conditions or to introduce maximum
damping in the structure. The element has only one edge where displacements are to be measured and
tractions are to be specified (see Fig. 2a). The displacement field for this element (at w, and 5,,) is

—jk —jk:
Upm = RHC],,mG sz +R12C2nme ! 227 (25)

—jki —jk:
Wim = RZlClnme sz + R22C2nme ! zz, (26)

where it is assumed that k; and k, are the positive roots of Eq. (12). Following the same procedure as before,
displacement at node 1 can be related to the constants C;,i=1,...,2 as
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{ﬁ}nm = [Tl]nm{c}nm' (27)
Similarly, tractions at node 1 can be related to the constants as
{tXI tyl}zm = [Tz]nm {Cl"’m Cznm}T’ i'e'7 {i:}nm = [Tz]nm{c}nm (28)

Explicit forms of the matrix Ty and T, are given in Appendix A (Eq. A.2). The tractions at node 1 can be
related to the displacements at node 1 as

{8}, = [Ta],,,[T1],,, {8} = (K], {8}, (29)

where K,,, is the (2x2) element stiffness matrix.
2.3. Expressions of stresses and strains

From the displacement field (Egs. (15) and (16)) and strain—displacement relation (Eq. (2)), the matrix of
strain—nodal displacement relation and stress—nodal displacement relation can be established as

€= BT;1ﬁ7 g = QBT]_lﬁa €= {exxa €2z, 6xz}7 0= {O-x_m Ozz, axz}a (30)

where the elements of B (size 3x4) are described in terms of the wave amplitude matrix R and given in
Appendix A (Eq. (A.3)). The Q is the elasticity matrix, which is also given in Appendix A (Eq. (A.4)).

2.4. Prescription of boundary conditions

Essential boundary conditions are prescribed in the usual way as is done in FE methods, where simply
the nodal displacements are arrested or released depending the nature of the boundary conditions. The
applied tractions are to be prescribed at the nodes. It is assumed that the loading function (for symmetric
loading) can be written as

F(x,2,t) = 0(z — z;) (Z an cos(nmx)> (Zﬁ&%”) , (31)

where ¢ denotes the Dirac delta function, z; is the Z coordinate of the point where load is applied and the z
dependency is fixed by suitably choosing the node where the load is prescribed. No variation of load along
Z direction is allowed in this analysis. f, are the fourier transform coefficients of the time dependent part of
the load which are computed by FFT and a,, are the fourier series coefficients of the x dependent part of the
load.

There are two summations involved in the solution and two associated windows, one in time 7 and one
in space L,. The discrete frequencies w, and discrete horizontal wavenumber 7,, are related to these win-
dows by the number of data N and M chosen in each summation, i.e.,

w, =2nn/T =2nn/(NAt), n,=2(m—1)n/L, =2(m— 1)n/(MAx), (32)

where At and Ax are the temporal and spatial sample rate, respectively.
2.5. Propagation of Lamb waves

As defined earlier, Lamb waves are guided waves (see Fig. 3(a)), propagating in a free plate and the two
lateral guiding surfaces are traction free. There are two main approaches to the analysis of the Lamb waves.
The first one is the method of potentials. In this method, Helmholtz decomposition of the displacement field
is obtained and the governing equations are uncoupled and written in terms of the potentials. Solutions are
sought for these potentials, which contains four arbitrary constants. The displacement field and the stresses
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Fig. 3. Propagation and modes of Lamb wave: (a) propagation of Lamb waves, (b) anti-symmetric mode and (c) symmetric mode.

are expressed in terms of the potentials and the imposition of the tractions free upper and lower surfaces
generates the necessary condition for finding the unknown constants and the dispersion equation, (see
Rose, 1999). The advantage of this method is that the symmetric and anti-symmetric modes can be isolated
during formulation, (see Fig. 3(b) and (c)).

The second approach is the partial wave technique, which is discussed below in detail. In the SLE
formulation, there are two summations in the solutions. The outer one is over discrete frequencies and the
inner one is over discrete horizontal wavenumbers. Each partial wave of Eq. (19) satisfies the governing
PDEs (Eq. (4)) and the coefficients C; as a whole satisfy any prescribed boundary conditions. As long as the
prescribed natural boundary conditions are non-homogeneous, no restriction upon the horizontal wave-
number 7 is imposed and that leads to double summation solution of the displacement field. However, that
is not the case for traction free boundary conditions on the two surfaces, which are the necessary condition
for generating Lamb waves. The governing discrete equation for finite layer (Eq. (24)) in this case becomes

K (1 1)), {01}, = 0, (33)

and we are interested in a non-trivial u. Hence, the stiffness matrix K must be singular, i.e.,
det(K(n,,, »,)) = 0, which is the required relation between 7,, and w,. Since, , is made to vary indepen-
dently, above relation must be solved for 7, to render the stiffness matrix singular, i.e., 1, cannot vary
independently. More precisely, for each value of w, there is a set of values of horizontal wavenumber 7,
(one for each mode) and for each value of w, and 5,, there are four vertical wavenumbers £,,,. The difference
in this case is in the value of #,,, which is to be solved for, as opposed to its expression in Eq. (32) and M is
the number of Lamb modes considered rather than Fourier modes. Now, for each set of
(s Ny ki), 1 =1, 4, K will be singular and C;,/ = 1,...,4 will be in the null space of K. Now using
Eq. (19), total solution can be constructed. Following the normal practice, the traction free boundary
conditions are prescribed at z = F4/2. Using Eq. (30), the governing equation for C; and #,, becomes

[Wa(n,, @) {C},,, =0, C={C1, G, G5, Gl (34)

where W, is another form of the stiffness matrix K and is given in Appendix A. The dispersion relation is
det{W,} = 0, which will yield #,,(w,) and the phase speed for Lamb waves c,,, will be given by w,/1,,. Once
the values of #,, are known for the desired number of modes, the elements of C,, are obtained by the
technique of SVD as described earlier to find the elements of R. Summing over all the Lamb modes, the
solution for each frequency is obtained.

3. Numerical examples

The developed spectral element is validated first to establish its accuracy and efficiency with respect to
conventional 2D FE solutions. Next, stress wave propagation through layered anisotropic media is stud-
ied. Subsequently, propagation of Lamb waves through layered media is studied. Finally, the present
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formulation is utilized to show its advantage in solving inverse problems such as force identification from
the measured response.

3.1. Verification of the SLE

Wave propagation in asymmetrically stacked composite layer is studied in this section and the results are
compared with 2D FE solutions. The material taken is GFRP composites, which has following material
properties: £; = 144.48 GPa, E; = 9.63 GPa, Gi3 = 4.13 GPa, vj3 = 0.3, vj; = 0.02 and p = 1389 kg/m?.
The ply-sequence considered is [0°,9/90°9/0°], where each laminae is 0.01 m thick. This large thickness is
chosen to differentiate between incident and reflected pulse, although any layer thickness can be chosen.
The layered system is impacted by a high frequency loading, as shown in Fig. 4. The time history of the load
along with its spectrum is shown in Fig. 5. As is seen there, the load is of unit magnitude and 50 ps duration
with an initial padding of 100 us. The load has high frequency content (around 46 kHz). This kind of high
frequency load excites many natural modes and the resulting response is suitable linear combination of all
these modes. Mode superposition method of analysis for this kind of loading will be computationally too
expensive and that is where the present element and formulation are most useful.

The load is applied at the centre of the top layer first in Z direction, which generates primarily QP wave
and then in X direction, which generates primarily QSV wave. Response of the structure is measured at
several locations along the surface and interfaces. For FE analysis, the layer is modeled with 3600, 3 noded
plane-strain FEs. In comparison, there are only 3 FLEs in the spectral model. The FE model results a
global system matrix of size 3656 x 126, whereas, the spectral model results a global system matrix (dynamic
stiffness matrix) of size 6 x 6. While solving via FE analysis, Newmark time integration is adopted with a
time increment of 1 us which means, to get a time history up to 600 us, the global matrix need to be back-
substituted 600 times. For the spectral analysis, the load is sampled at 48.83 Hz with 2048 (N in Eq. (31))
FFT points. Further, for spatial variation, 32 fourier series coefficients (M in Eq. (31)) are considered. For
concentrated load all the a,,s are equal to 2/X;, where X} is the window length in X direction, here taken as
1.0 m, as per the FE model. Since, the time domain response is real, the computation of displacements (or
velocities) needs to be carried out only up to the Nyquist frequency. Hence, the global stiffness matrix need
to be inverted 1025x32 times. This computational requirement is many order smaller compared to the
requirement of the FE analysis. Further, a typical simulation in FE takes 110 s of CPU time, whereas, a SE
run takes 14 s in Compaq Alpha Server ES40 with DEC compiler.

Before discussing the velocity histories (and subsequently plotted stress histories) few points need to
considered. When a velocity wave encounters a stiffer zone the reflected wave has equal magnitude with
opposite sign of the incident wave. As opposed to that, when the wave encounters a zone of comparatively
lower stiffness, the reflected wave has equal amplitude with same sign of the incident wave. These

2 3
O ©o—© X
. 2
90 e
Z0 5O

Fig. 4. Layer model for verification.



A. Chakraborty, S. Gopalakrishnan | International Journal of Solids and Structures 41 (2004) 5155-5183 5167

5

x 10
25
1.2
1
2r 0.8 i
__ 06
£
= 04
g
) = 0.2
E 15F o E
Q.
£ 0.2
>
2 0.4
E
g 1k 0 100 200 300 |
T Time (1 sec)
0.5 —
0 Il Il Il Il Il Il L + L
0 10 20 30 40 50 60 70 80 90 100
Frequency (KHz)

Fig. 5. Load applied for verification study.

Z-velocity at 1 due to Z-load at 1, m/s

-8 1 I 1
0 1 2 3 4 5 6

Time, sec x 10
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Fig. 7. QP wave at the interface, solid line—SE, dashed line—2D FE.
x107
15 T T T T T

Z-velocity at 5 due to Z-load at 1, m/s

1 1 1 1 1 1

0 1 2 3 4 5
Time, sec x107™

[}

Fig. 8. QP wave at the interface, solid line—SE, dashed line—2D FE.
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X-velocity at 2 due to X-load at 1, m/s

X-velocity at 3 due to X-load at 1, m/s
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Fig. 9. QSV wave at the surface, solid line—SE, dashed line—2D FE.
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Fig. 10. QSV wave at the surface, solid line—SE, dashed line—2D FE.
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phenomena are best visible in the reflections from the fixed end (infinite stiffness) and free end (zero
stiffness) of a structure. However, reflected waves are also generated at the interfaces of laminates because
of mismatch in stiffness and hence in impedance. In the present model, propagation is considered in the
direction of ply-stacking and there is nominal change in stiffness in that direction, due to change in laminae
angle. Hence, the magnitude of the reflected waves from the interface will not be large enough to be visible,
in comparison to the boundary generated waves. Thus whatever reflections are present in the velocity or
stress history are solely due to reflections from the boundary.

For the load applied in Z direction at point 1, Z directional velocity w, is measured at points marked by
1,4, and 5. The velocity history of these nodes are plotted in Figs. 6-8. In Fig. 6, peak at 100 ps is the direct
effect of the load. For this kind of loading the propagating wave is essentially QP wave. In this case, the
inverted peak at around 3.2x 10~ s is the reflection from the fixed end, i.e., at z = 0.3 m. Again at the fixed
end, the wave gets inverted and shows up at around 5.4x10~* s. This figure also shows the excellent
agreement between the FE and SLE responses.

Next, the w history at first interface (z = 0.1 m, point marked by 4) is plotted in Fig. 7. The response in
this case does not start at 100 ps as before, but at 130 ps. This time is taken for propagation in the first
layer, i.e., 0° laminate. Subsequent reflections at around 2.9x 10™* s and 3.6x 10~* s are due to reflections
from the fixed edge (z= 0.3 m) and free edge (z = 0.0 m), respectively. Further, the peak at around
5.0x107* s is the second reflection from the fixed edge.

For the w history measured at second interface (z = 0.2 m, point marked by 5) and plotted in Fig. 8 the
main peak comes down to 1.67x10~* s because of large travelling distance. The QP wave velocity at 90°
laminate is lesser than that in 0° laminate and hence this increase (above 1.6x107#) in propagation time.
There are reflections from the fixed end (inverted peak at around 2.46 x 10~ s), reflections from the free end
(inverted peak at 4.0x10~* s) and the second reflections from the fixed end (peak at around 4.7x 1074 s).
The SLE captures these reflections quite well and except at the last reflection, the response matches sat-
isfactorily with FE response.

Next, the same load is applied at point 1 in X direction. For this load primarily QSV wave is generated.
There will be no wave at the impact point and X directional velocity # is measured at the surface points 2
and 3 and plotted in Figs. 9 and 10, respectively. In both the cases several reflections from the fixed ends are
visible. As before, good agreement between FE and SLE responses can be observed. These responses
establish the developed SLE in terms of accuracy, efficiency and cheap cost of computation.

3.2. Propagation of stress waves in layered media

In this section, the formulated element is employed to study the stress wave propagation in layered
media, which is very important from structural health point of view. In particular, inter-laminar normal
(0..) and shear (o,.) stresses are of great concern as they are root cause for delamination in composite. The
same layered system of previous example is taken in this study. Tractions are specified in both X and Z
direction, where the same load history (Fig. 5) is applied. It is to be noted that, for stress wave, fixed end
generates a reflected wave of having same magnitude and sign of the incident wave, and free end generates a
reflected wave of same magnitude but opposite sign of the incident wave.

First, the traction is applied in Z direction and normal stress o, is measured at point 1, 4 and 5. The
normalized (with respect to the maximum magnitude in each case) measured stresses are shown in Fig. 11.
As is seen there, at the surface the stress history profile is exactly the same as the applied traction, which is
expected. However, at the interfaces the initial peak appears after a certain interval of time due to finite
propagation speed. Further, multiple reflections are visible at the interfaces, which results both tensile and
compressive stresses. These stresses will be responsible for delamination or matrix cracking, if they exceed
the allowable limit. For the stress wave measured at the second interface, the first positive peak is the
reflection from the fixed end and subsequent negative peak is the reflection from the free end. Similarly, the
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second negative peak is the second reflection from the fixed end, whereas, the second positive peak is the
second reflection from the free end. Similar traits are visible in the stress wave measured at the second
interface (z = 0.2 m). The shear stresses generated at the interfaces due to this load is plotted in the top two
subplots of Fig. 13. No shear stress is generated at the top surface. Although their magnitude is very less
compared to the normal stresses, their existence may prove fatal sometimes. Most importantly, reversal of
stresses at the interfaces can cause severe damage to the structure.

Next, the load is applied in X direction and shear stresses at the surface and interfaces are measured at a
X coordinate of 0.2 m and plotted in Fig. 12. As usual, the surface stress wave is same as the applied stress,
whereas, the main interface wave peaks are of opposite sign. Further, the reflections from the fixed and free
ends follow the same trait of the normal stress. The normal stresses generated at the interfaces due to this
traction is plotted in the lower two subplots of Fig. 13. Again several reversal of stresses are visible, par-
ticularly for the second interface.

Above example shows the general stress pattern that exists in a layered media for applied normal and
shear tractions and effect of boundaries on the conversion of these stresses. In particular, boundaries
generate stress waves which may be as strong as the original pulse. Further, stress waves can be trapped in a
layer, which may cause severe damage in absence of low dissipation rate.

3.3. Propagation of Lamb waves in layered media

A uni-directional laminae of 2 mm. thickness is considered for the study of propagating Lamb wave
modes. Analysis is performed for three different fibre-directions are considered, 0°, 45° and 90°. Material
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Fig. 15. Lamb wave propagation for 0° ply-angle, L = 320h.
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properties of the composite are as taken before. The dispersion relation (relation between ¢, = @/ and )
is usually left in the form of a determinant equal to zero because of its complexity. Hence, solution for this
kind of implicit equation requires special treatment. The solution in particular is multi-valued, unbounded
and complex (although the real part is of interest). One way to solve these equations is to appeal to the
strategies of non-linear optimization, which are based on non-linear least square methods. There are several
choices of algorithms, like trust-region dogleg method, Gauss—Newton method with a line search, or a
Levenberg—Merquardt method with line-search. Here, MATLAB function fsolve is used and the default
option for medium scale optimization—the trust-region dogleg method is adopted, which is a variant of the
Powell’s dogleg method (Powell, 1970).

Apart from the choice of algorithm there are other subtle issues in root capturing for the solution of
wavenumbers as the solutions are complicated in nature. Moreover, except the first one or two modes, all
the other roots escape to infinity at low frequency. For isotropic materials, these critical frequencies are
known below which the phase speed is infinite. However, no expressions can be found for anisotropic
materials and most of the times, the modes (solutions) should be tracked backward, i.e., from higher
frequency to lower frequency. In general two strategies are essential to capture all the modes within a
given frequency band. Initially, the whole region should be swept for different values of the initial guess,
where the initial guess should remain constant for the whole range of frequency. These sweeping opens
up all the modes in that region, although they are not completely traced. subsequently, each individual
mode should be followed to the end of the domain or to a pre-set high value of the solution. For this
case, the initial guess should be changed for each frequency to the solution of the previous frequency
step. Also, sometimes it is necessary to reduce the frequency step in the vicinity of high gradient of the
modes. Once the Lamb modes are generated they are fed back into the frequency loop to generate the
frequency domain solution of the Lamb wave propagation, which through IFFT produces the time
domain signal. As the Lamb modes are generated first, they need to be stored separately. To this end
data are collected from the generated modes at several discrete points in the whole range of frequency.
Next, a cubic spline interpolation is performed for a very fine frequency step within the same range.
While generating the time domain data, interpolation is performed from these finely graded data to get
the phase speed (hence, 7).

To get the time history of propagating Lamb waves a modulated pulse of 200 kHz center frequency is
applied at one end of an infinite plate and X and Z velocities are measured for a propagating distance of
320h, where # is the thickness of the plate. While studying the time domain representation, the thickness
of the plate is taken as 10 mm, which amounts to a frequency-thickness value of 2. This increased
thickness is taken because for this value, atleast three modes will be excited in all the cases, as shown by
their respective dispersion curves (Figs. 14, 17 and 20). To get the same frequency-thickness value
otherwise, we have to increase the frequency content of the load to 750 or 800 kHz, which is compu-
tationally prohibitive.

In all the plots of Lamb modes the abscissa is given in terms of frequency times the thickness. Fig. 14
shows the first 10 Lamb modes for fibre angle 0°. As is seen in there, first anti-symmetric mode (Mode 1)
converges to a value of 1719 m/s in a range of | MHz mm, where all the other modes converge at various
later values of frequency. In analogy to the isotropic case, this is the velocity of Rayleigh surface waves in 0°
fibre laminae. The first symmetric mode (Mode 2) starts above 10 000 m/s and drops suddenly at around 1.3
MHzmm to converge to 1719 m/s, before which it has fairly constant value. All the other higher order
modes escape to infinity at various point in the frequency range. Also the symmetric and anti-symmetric
pair of each mode escape almost at the same frequency.

Propagation of these modes are plotted in Figs. 15 and 16 for first three modes (ag,so and a;), here
referred as Mode 1, 2 and 3 respectively. In Fig. 15, the Z velocity history is plotted, whereas in Fig. 16
the X velocity history is plotted. The figures readily show the different propagating modes, each corre-
sponds to one blob. It is to be noted that, wave propagation velocity is given by the group speed (and
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not the phase speed). Hence, Fig. 14 will not help us to predict the appearances of different modes.
However, as Fig. 15 and 16 suggest, mode 2 has a lower group speed than mode 1 and mode 3 has a
group speed much higher than both mode 1 and 2. One difference in the & and w history can be observed.
For #, the higher mode generates velocity of comparatively lesser magnitude, whereas, for w, the mag-
nitude is highest.

Next the fibre angle is changed to 45° and the Lamb modes are plotted in Fig. 17. Here, the phase
velocity of Mode 1 (ag) is lower than the previous values for 0° (1690 m/s). Also, initial phase velocity of
Mode 2 (so) has come down to less than 6000 m/s in comparison to its 0° counterpart (10000 m/s).
Further, critical frequencies of all the higher modes are lower compared to the previous case. Also there
are considerable differences in this critical frequencies for each pair of symmetric and anti-symmetric
modes, which is absent 0° case. Moreover, number of modes also is increased to 11 from 10 in the
previous case. The time domain representation of the propagating waves are shown in Figs. 18 and 19. In
this case, however, the second mode has higher group velocity than the first mode and the third mode has
the highest group speed.

Finally, the fibre angle is changed to 90° and the resulting mode shapes are plotted in Fig. 20. The
shifting of the modes to the left of the figure continues as the number of modes is increased to 12.
Further, the first symmetric mode has come down to 2600 m/s and the first anti-symmetric mode is
reduced to a converged speed of 1510 m/s. For this modes the propagating Lamb wave is plotted in Fig.
21 and 22 for @ and w, respectively. As the figures suggest, mode 2 again has lower group speed
compared to mode 1 and mode 3 has higher speed than both mode 1 and 2. However, the difference
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between the mode 3 group speed and mode 2 group speed is not very high as opposed to the previous
cases.

3.4. Force reconstruction from truncated response

The basic idea of force identification in frequency domain analyze is presented below. Since the whole
spectral formulation is in the frequency/wavenumber domain, the response is related to the input through
the transfer function in the frequency/wavenumber domain as

?(wna”m) :I:I(wnanm)‘f((wn,”m)a (35)

where X(w,,n,,) is the transformation of the input (say, load), Y(w,,n,) is the transform of the output
(typically, velocity, strain etc.), and H(w,,7,,) is the system transfer function. Now, input force can be
obtained easily by dividing the transform of the response by the transfer function, that is,

X (@, n,) = Y(@n,m,,) /H (w0, 1,,). (36)

Thus, if the response is known at some point, then the disturbance that caused it can be computed. This is
one of the distinct advantage of the spectral approach in its ability to solve inverse problems.
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Fig. 21. Lamb wave propagation for 90° ply-angle, L = 320A.



A. Chakraborty, S. Gopalakrishnan | International Journal of Solids and Structures 41 (2004) 5155-5183 5179

2

ir Mode 1 b
0
1+ -
-2 I I I 1 1
0 0.5 1 15 2 2.5 3
x 10
2
o
€ 1f Mode 1 & 2 R
>
£0
k=)
[
>_1+ -
x
-2 ! ! ! ! !
0 0.5 1 15 2 2.5 3
x 10
2
1 Mode 1,2 &3 B
0
1+ B
-2 | | | | |
0 0.5 1 15 2 25 3
Time, [sec] x 10

Fig. 22. Lamb wave propagation for 90° ply-angle, L = 3204.

In general, Y(w,,,) will be experimental data, typically transform of strain history (Rizzi, 1989). In
this work, FE analysis output is taken as a replacement of experimental output and when this response
is fed into the spectral solver the applied force can be reconstructed. The experimental outputs are
always truncated at some point. This is the reason why the FE output is also truncated to simulate the
experimental output. It is to be noted that, the present model is a second order system, where in most
of the cases the waves are non-dispersive in nature. The tracking of reflection is quite simple in such
systems.

The layered system of the verification study is taken here and the same load is applied at point 1.
The FE signal taken as a substitute for experimental output is the response of Fig. 6, shown in dashed
line. This FE signal is truncated at three different times (z.), 1000, 500 and 250 ps. The truncated re-
sponses are shown in Fig. 23. When these responses are given as input in the spectral solver force
history comes as output. These histories are plotted in Fig. 24 for the three different cut-off points. As is
seen in the figure, for the truncation time of 1000 ps, reconstructed force history matches almost exactly
with the original force history. The second and third truncated signals (¢, = 500 and 250 ps, respec-
tively) also generate the initial form of the load history quite accurately. However, the second truncated
signal registers an inverted peak at around 700 ps and the third signal shows another extra peak at
around 350 ps, which are not present in the original history. Surely, these responses arise because of the
removal of later part of the FE response. Thus, the peak at 700 ps arise due to removal of second and
subsequent reflections from the fixed end and the peak at 350 ps is due to the removal of the first
reflection from the fixed end. Hence, if it is known that there is only one impact load and only the
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Fig. 23. FE response truncated at several points.

duration and magnitude of that load is desired, FE response (or the experiment output) can be trun-
cated at any point after the main peak. This exercise further demonstrates the inherent efficiency of the
spectral formulation in source reconstruction.

4. Conclusion

A spectral element is developed to analyze wave propagation in layered media. The element captures the
essential response of layered system to impact loading quite efficiently compared to conventional FE
modeling and analysis. Stress state within a multi-layered system reveals trapping of energy and multiple
reversal of stresses, which may prove fatal to the safety of the structure. Further, Lamb modes are com-
puted for uni-directional composite laminate and effect of different modes on time domain response is
investigated for different fibre angles. It is shown that the increase of ply-angle increases number of active
modes within a defined frequency range, reduces escape frequency (frequency where the phase speed be-
comes infinity) and reduces phase speeds. Finally, inherent advantages of spectral element formulation is
utilized to reconstruct applied force history from truncated responses. It has been shown that the later part
of the response does not influence the main loading pulse and it is possible to have a fair approximation of
the applied pulse from a early truncated signal.
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Fig. 24. Reconstructed force history for several truncated responses, solid line—original force history, dashed line—reconstructed force
history.

Appendix A

The matrices Ty and T, for the FLE (used in Egs. (21) and (23)):

R Ri> Ri3 R4
Ry Ra Ro3 Ry
T, = | A | -, (A1)
Ryel)  Rel-ikl) R eltihl) R eltikl)

Rzle(*jle) R226<*jk2L> R23e(+jk1L> R24e(+j]‘2L)

Iy(1,p) = =Oss(—jRiyk, — nRop),
T5(2,p) = jO3Ropk, — Q131R1p,
T5(3,p) = Oss(—jRiyk, — nRs,)e H)
T5(4,p) = {—iOxRyk, + O13nR;, ye b

where p ranges from 1 to 4, k3 = —k; and ky = —k;.
For the ILE, Ty and T, can be obtained by truncating the matrices of FLE. In particular,

T 1(ILE) TI(FLE (1 2 1: 2) TZ(ILE) = TZ(FLE)(I : 2,1 : 2) (A2)
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The matrix of strain—displacement relation, B is given by

B(l,p) = Rlpne_jkpza B(2,p) - 7].R2pkpe_jkpzv

. ks (A.3)
B(3,p) = —(iRipk, + Ropn)e 7,
where z is the point of strain measurement. The elasticity matrix Q is
On O 0
Q=015 0On 0 |. (A4)
0 0 Os

Elements of W, (appeared in Eq. (34)) are

. i)
W(1,p) = (QuR(1,p)n — jO13R(2, p)k,)e"
. 2
W5 (2,p) = (OnR(1, p)n — jOiR(2, p)k,)e v,
. o h/2
W(3,p) = Oss(—R(1, p)k, +jR(2, p)n)e’s ",
. 7A'h/2
W(4,p) = Oss(—R(1, p)k, +jR(2, p)n)e .
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