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Abstract

Wave propagation in orthotropic layered composite media due to high frequency impact loading is studied using a

new spectral layer element (SLE). This novel element is formulated using the method of partial wave techniques (PWT)

in conjunction with linear algebraic methodology. The matrix structure of finite element (FE) formulation is retained,

which substantially simplifies the modeling of multi-layered structure. The developed SLE has an exact dynamic

stiffness matrix, as it uses exact solution to the governing elastodynamic equation in frequency domain as its inter-

polation function. Due to this, the mass distribution is modeled exactly, and as a result, the element gives exact fre-

quency response of each layer. Hence, one element may be as large as one complete layer and as a result system size is

very small compared to conventional FE system sizes. The fast-Fourier transform (FFT) and Fourier series are used for

inversion to the time/space domain. The formulated element is further used to study the stress distribution in a multi-

layered media. As a natural application, Lamb wave propagation in composite plate is studied for different ply-angle

and time domain description is obtained. Further, advantage of the spectral formulation in impulse force identification

is demonstrated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Layered media are encountered in various natural (soil, wood, tissue, etc.) and artificial (bi-material,
fibre reinforced composite, graded materials etc.) structural systems. All these systems are prone to dynamic

loads and most often, high frequency impact loads, in their lifetime. Hence, analysis for these layered

systems for impact loading is important and requires critical attention because of the following reasons.

It is quite well known that layered composite structures have low impact resistance. The impact resis-

tance depends on the ply layup, its orientation and also on the material properties of the composite layer.
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For efficiently designing the composite structures for impact loading, it is necessary to know the high

frequency behavior of the structure.

Analysis of structures subjected to impact load (a load of very small duration compared to the natural

time periods of the system) by conventional FE analysis is difficult because of restricted computational
resources. This is because, for accurate prediction, the element sizes should be of the order of the wave-

length (Kuhlemeyer and Lysmer, 1973), which is very small (since the frequency is high) and thus the cost of

computation becomes enormous. Added to that is the dimension of the structure, which may be very large

if e.g., a soil strata. Another way of viewing this problem is: since the energy content of the load is very

high, myriad modes will get excited and unless sufficient number of elements is used the higher order mode

shapes will not be captured properly and hence there will be loss of accuracy. Hence, conventional time

domain FE method is computationally prohibitive for such problems. This takes us to the realm of fre-

quency domain analysis and in particular, Spectral analysis.
Spectral analysis, as outlined by Chatfield (1984), is the synthesis of waveforms from the superposition of

many frequency components, has been developed as a method based on matrix methodology by Doyle

(1997), which is called the spectral finite element method (SFEM). As in conventional FE method, in

SFEM, the nodal displacements are related to nodal forces through a frequency dependent dynamic

stiffness matrix. The matrix-vector equation is solved for each frequency and quantities of interest are

transformed back to time domain through inverse fast Fourier transform. Primary works in one dimen-

sional waveguides can be found in Doyle (1988) and Doyle and Farris (1990). Wave propagation in

multiply connected one dimensional higher order isotropic wave guides was studied by Gopalakrishnan
et al. (1992) and Martin et al. (1994). In the area of composites, the SFEM is used to develop Euler–

Bernoulli beam (Roy Mahapatra et al., 2000) and Timoshenko beam (Roy Mahapatra and Gopalakrish-

nan, 2003a), beam with embedded delamination (Nag et al., 2003) and composite tubes (Roy Mahapatra

and Gopalakrishnan, 2003b).

Spectral element (SE) for 2D model is formulated by following the same procedures as in 1D case, where

interfacial displacements are related to interfacial tractions through frequency dependent stiffness matrix.

However, the stiffness needs to be established in frequency and wavenumber domain, where the later can be

thought of as spatial frequency. Contribution from distributed mass can be represented exactly and con-
sequently, elements need not to be small, and they can extend from one interface to another. Spectral

element for isotropic layered solids was formulated by Rizzi (1989) and Rizzi and Doyle (1989, 1991).

Further, 2D isotropic plates and shells were analyzed by Doyle (1997). A spectral element for inhomo-

geneous layered media was developed Chakraborty and Gopalakrishnan (2003), where an approximate

spectrum relation was established.

There are few other works where wave propagation in layered media was treated in a slightly different

way. A matrix formulation for the propagation of plane elastic waves through a stratified medium was first

developed by Thomson (1950) and Haskell (1953). It relates the displacements and loads at one interface to
those at another through a propagator matrix. Further development of the method, including the ability to

handle generally crested waves and a discrete form of the inversion procedures, are summarized by Kennett

(1983).

The limitations of the SLE formulation of Rizzi and Doyle (1991), is that Helmh€oltz decomposition of

the displacement field in terms of a scalar and vector potential is required, apriori. There is an advantage in

the decomposition. It uncouples the governing Navier’s equation and generates two Helmh€oltz equations in
terms of scalar and vector potential, which are solvable readily. Solution for the displacement field is then

obtained from these two exact solutions and the element is formulated. But for anisotropic materials and
other structural approximations like plates and shells, finding the potential itself is a difficult task and even

if it is found, they may not uncouple the governing equations (Rose, 1999). Hence, the formulation must be

carried out without any knowledge of the potentials. There is another important distinction between iso-

tropic and anisotropic media. In isotropic materials, only pure modes (longitudinal and shear) are possible,
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i.e., polarization vector is either parallel or normal to the propagation direction. However, for anisotropic

media, pure modes can occur for some propagation directions depending upon the degree of symmetry of

the material under consideration (Nayfeh, 1995). Another definition of pure modes given by Solie and Auld

(1973) states that when propagation direction coincides with the direction of energy flow, the modes of
propagation are pure modes. This kind of wave also occurs in anisotropic material only under certain

material symmetry condition. For this reason, the waves in anisotropic materials are named quasi-longi-

tudinal (QP) wave and quasi-shear waves (QSH and QSV), to differentiate from their isotropic counter-

parts. The most exhaustive treatment of wave propagation in layered composite media is given by Nayfeh

(1995). Further discussion on this subject can be found in Rose (1999). Other than these two books, the

literature on wave propagation in laminates due to low-velocity impact is limited in numbers, mostly

studied by Mal and Lih (1992) and Lih and Mal (1992, 1995, 1996) and Mal (2002). Further, wave

propagation in composite laminate for anti-plane loading was studied by Ma and Huang (1995), where
closed form expressions were found for displacements and stresses.

The most general method of treating the propagation of elastic waves in anisotropic media is the partial

wave technique (PWT) (Solie and Auld, 1973). The essence of the technique is to satisfy the governing

equation and the appropriate boundary conditions by taking a superposition of two upward traveling plane

wave modes (i.e., one quasi-longitudinal and one quasi-shear) and two downward traveling plane wave

modes. Each of the four waves (six in three dimension) is termed as partial wave because they all combine

to give a single guided wave mode of the layer. As the partial waves satisfy the governing equation indi-

vidually, any linear combination of these waves also satisfy the governing equation (since the equation is
homogeneous). The coefficients of this waves must be chosen to ensure that the appropriate boundary

conditions are satisfied at the upper and lower surface of the layer.

So far, we see that all the works on the development of the SE for composite material are confined to 1D

structures and no element exists for the analysis of wave propagation in composite layered media. In this

work, a SE is formulated for general anisotropic layer, where, in the element formulation, we propose a

simplified way of finding the wavenumbers and wave amplitudes numerically, which together construct the

partial waves. As all the four wavenumbers are computed at a time, as opposed to the other methods (Roy

Mahapatra et al., 2000; Roy Mahapatra and Gopalakrishnan, 2003a,b), there is no way to identify the
different modes. While deriving the stiffness matrix it is an added advantage if the modes can be identified.

However, in the present formulation, the knowledge of the modes is not essential. Once the partial waves

are found, the wave coefficients are obtained for general stressed boundary conditions, i.e., two non-zero

tractions are specified at the top and bottom of the layer. Here, it differs from other formulation based on

the PWT, as no specific problem oriented boundary conditions are imposed. Thus a system matrix is

established, which relates the tractions at the interface to interfacial displacements. This generalization

enables the use of the system matrix as a finite element dynamic stiffness matrix, although formulated in

frequency/wavenumber domain. These matrices can be assembled to model different layer of different ply-
orientation, which obviates the necessity of cumbersome computation associated with multi-layer analysis,

(e.g., Rose, 1999). The advantage of the present formulation in association with the PWT is in its appli-

cation to construct element stiffness matrix for a wide range of structures (like plates and shells) and

materials (inhomogeneous and viscoelastic). In particular viscoelastic layers can be analyzed in much more

comfortable way compared to FE analysis, as the whole formulation is done in frequency domain.

However, in the present manuscript, we have restricted ourselves to elastic anisotropic materials.

Another advantage of the present formulation is the ease in capturing the Lamb wave (Viktorov, 1967)

propagation in anisotropic plate. By definition the Lamb waves are guided waves propagating in a domain
bounded by two parallel traction-free surfaces. The importance of Lamb waves in NDE applications lies in

its ability to inspect large areas at a time by propagating long distance without attenuation. Hence, they

find immense application in structural health monitoring. Historically, dispersion relation (phase velocity–

frequency relation) for anisotropic materials was given first by Solie and Auld (1973), where partial wave
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techniques were used. However, the relation was obtained for a (0 0 1)-cut copper plate. Subsequent

investigations on modeling aspects of Lamb waves were carried out by several researchers (Nayfeh, 1995).

Finite Element modeling of Lamb waves was performed by Verdict et al. (1996). On the basis of discrete

layer theory and multiple integral transform an analytical-numerical approach is given by Veidt et al.
(2002). A coupled FE-normal mode expansion method is given by Moulin et al. (2000). Similarly Boundary

Element-normal mode expansion method is given by Zhao and Rose (2003). The present formulation by

virtue of frequency-wavenumber domain representation of solution is an inexpensive way of constructing

the Lamb wave modes as well as predicting time domain signals.

Another important issue related to composite material is solving inverse problems, in particular, material

and force identification. To the best of authors’ knowledge, there are very few works reported on force

reconstruction in composite structures. The present element is suitable for force identification because the

frequency response function (FRF) of the modeled system, is a direct by-product of the SE procedure. The
convenience and versatility of SE in conjunction with experimental data was demonstrated earlier to predict

force history in mono-material beam (Doyle, 1984), bi-material beam (Doyle, 1993), isotropic plates

(Doyle, 1987a), orthotropic plates (Doyle, 1987b), isotropic layered media (Rizzi and Doyle, 1991) and

inhomogeneous layered media (Chakraborty and Gopalakrishnan, 2003, submitted).

There are many instances, where cost of a prototype or difficulty in obtaining a suitable physical model

for impact testing preclude any experimental evaluation and numerical simulation becomes the only option

for parameter estimation. Also, several difficulties are associated with wave propagation experiments

performed over a finite length models in terms of noises and boundary reflections. For accurate force
prediction, complete trace of the measured signal is required. The experimentally generated signal required

to be truncated at some point. Choosing the point of truncation requires critical consideration since

valuable information may be lost in pre-mature truncation. For dispersive system, in particular, caution

should be exercised in selection of this truncation points, as the wave response will not die down completely

within the chosen time window. In earlier works on inhomogeneous plate (Chakraborty and Gopala-

krishnan, 2003, submitted), FE responses were taken as surrogate experimental results. Since experimental

outputs are always truncated at some point depending upon the constraints of the set-up, data acquisition

system and other facilities, the FE response should be taken such that it simulates closely the experimental
results. When this truncated response is given as input to the SE solver, the force data can be reconstructed

by performing inverse analysis. The same idea is used in this work to identify the applied impact force from

the FE responses.

The manuscript is organised as follows. In Section 2, detail of the SLE formulation is given. In Section 3,

several numerical examples are discussed. First, the efficiency and accuracy of the present element is

demonstrated. Next, stress waves in layered media is investigated. Next, Lamb waves in anisotropic layered

media are captured. Finally, applied impact force is reconstructed from FE signal. In Section 4, conclusions

are drawn.
2. Spectral layer element formulation

It is assumed that there is no heat conduction in and out of the system, displacements are small, material

is homogeneous and anisotropic and the domain is in two dimensional (2D) Euclidean space. The general

elastodynamic equation of motion for three dimension is given by
rij;j ¼ q€ui; rij ¼ Cijkl�kl; �ij ¼ ðui;j þ uj;iÞ=2: ð1Þ
For 2D model with orthotropic material construction, complexity of the above equation can be further

reduced by the following assumptions. The non-zero displacements are u1 ¼ u and u3 ¼ w in the direction
x1 ¼ x and x3 ¼ z, respectively. The non-zero strains are related to these displacements by
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�xx ¼ ux; �zz ¼ wz; �xz ¼ uz þ wx: ð2Þ

The non-zero stresses are related to these strains by the relation
rxx ¼ Q11�xx þ Q13�zz; rzz ¼ Q13�xx þ Q33�zz; rxz ¼ Q55�xz; ð3Þ

where Qijs are the stiffness coefficients, which depend on the ply layup and its orientation. The expressions

of Qijs are given in Reddy (1996). Substituting these stresses in the governing equation the elastodynamic
equation for 2D orthotropic media is
Q11uxx þ ðQ13 þ Q55Þwxz þ Q55uzz ¼ q€u;

Q55wxx þ ðQ13 þ Q55Þuxz þ Q33wzz ¼ q€w:
ð4Þ
The displacement field is assumed to be a synthesis of frequency and wavenumbers, both horizontal and

vertical, as
uðx; z; tÞ ¼
XN�1

n¼1

XM�1

m¼1

ûðz; gm;xnÞ
sinðgmxÞ
cosðgmxÞ

� �
ejxnt; ð5Þ

wðx; z; tÞ ¼
XN�1

n¼1

XM�1

m¼1

ŵðz; gm;xnÞ
cosðgmxÞ
sinðgmxÞ

� �
ejxnt; ð6Þ
where xn is the discrete angular frequency, gm is the discrete horizontal wavenumber and j2 ¼ �1. The X
dependency of the displacement field (sine or cosine) will be determined based upon the loading pattern.

For loads having symmetric distribution about Z axis, sine function for u and cosine function for w are to be

chosen. In all subsequent formulation and computation, symmetric load pattern will be considered. Dis-
crete values of gm depend upon the X window length and number of mode shapes (M) chosen. In what

follows, boldface uppercase and lowercase letters denote matrices and vectors, respectively.

To get the expression for ûðzÞ and ŵðzÞ, Eqs. (5) and (6) need to be substituted in Eq. (4), which results in

two ordinary differential equations (ODEs) for ûðzÞ and ŵðzÞ in which xn and gm will be present as

parameters. The equation in matrix vector notation is
Aû00 þ Bû0 þ Cû ¼ 0; û ¼ fû ŵg; ð7Þ

where prime denotes differentiation with respect to z. The matrices A, B and C are
A ¼ Q55 0

0 Q33

� �
; B ¼ 0 �ðQ13 þ Q55Þgm

ðQ13 þ Q55Þgm 0

� �
; ð8Þ

C ¼ �g2mQ11 þ qx2
n 0

0 �g2mQ55 þ qx2
n

� �
: ð9Þ
For homogeneous material these ODEs are of constant coefficients and solutions are in the form of

u0e�jkz and w0e
�jkz where u0, w0 and k, the vertical (Z direction) wavenumbers, are unknowns. Substituting

these solutions in Eq. (7), the problem becomes of finding non-trivial u0, w0 from the equation
Wfu0g ¼ 0; W ¼ �k2A� jkBþ C; fu0g ¼ fu0 w0g; ð10Þ

where W is called the wave matrix. As we are interested in non-trivial values of u0, the wave matrix must be

singular, i.e., determinant of the matrix must be zero, which is the required condition for finding the

wavenumber k. The wave matrix in explicit form is
W ¼ �k2Q55 � g2mQ11 þ qx2
n jkgmðQ13 þ Q55Þ

�jkgmðQ13 þ Q55Þ �k2Q33 � g2mQ55 þ qx2
n

� �
: ð11Þ
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The singularity condition of W yields
Q33Q55k4 þ fðQ11Q33 � 2Q13Q55 � Q2
13Þg2m � qx2

nðQ33 þ Q55Þgk2

þ fQ11Q55g
4
m � qx2

ng
2
mðQ11 þ Q55Þ þ q2x4

ng ¼ 0: ð12Þ
The above equation which relates vertical wavenumber k to the horizontal wavenumber g and frequency x
is called the spectrum relation. It is to be noted that for each value of gm and xn, there are four values of k,
denoted by klmn; l ¼ 1; . . . ; 4, which will be obtained by solving the spectrum relation. Explicit solution of

the wavenumber k is klnm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

pp
, where a, b and c are the coefficients of k4, k2 and k0,

respectively, in Eq. (12).

There are certain properties of the wavenumbers which will be explored now. As can be seen from Eq.

(12), for gm ¼ 0, the equation is readily solvable to give the roots �x
ffiffiffiffiffiffiffiffiffiffiffiffi
q=Q33

p
and �x

ffiffiffiffiffiffiffiffiffiffiffiffi
q=Q55

p
. Since, none

of the q, Q33 or Q55 can be negative or zero, these roots are always real and linear with x. When gm is not

zero, k becomes zero for x satisfying
Q11Q55g
4
m � qx2

ng
2
mðQ11 þ Q55Þ þ q2x4

n ¼ 0;

i:e:; ðQ11g
2
m � qx2ÞðQ55g

2
m � qx2Þ ¼ 0;

i:e:; x ¼ gm
ffiffiffiffiffiffiffiffiffiffiffiffi
Q11=q

p
; gm

ffiffiffiffiffiffiffiffiffiffiffiffi
Q55=q

p
:

ð13Þ
Before these frequencies, the roots are imaginary and non-propagating and after these frequencies, the

roots are real and propagating. These frequencies are called cut-off frequencies. For isotropic materials they

are given by cpg and csg (Rizzi, 1989). The current expressions for cut-off frequencies are also reducible to

that of isotropic materials if we identify Q11 and Q55 with kþ 2l and l, respectively, where k and l are the

Lame’s parameters. If we identify QP wave with Q33 (or Q11) and QSV wave with Q55, then as the cut-off

frequencies suggest, for the same value of gm, it is the QSV wave that becomes propagating first, since
Q11 > Q55. The wavenumbers of positive roots denote forward propagating modes and the negative roots

denote backward propagating modes. In Fig. 1, the wavenumbers are plotted for three different ply-angles,

0�, 45� and 90�. For all the ply-angles, Q33 and Q55 are assumed 9.69 GPa and 4.13 GPa, respectively. For
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Fig. 1. Variation of wavenumber with xn (gm ¼ 10).
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Q11 and Q13, following values are assumed. For 0�, Q11 ¼ 146:3 GPa and Q13 ¼ 2:98 GPa, for 45�,
Q11 ¼ 44:62 GPa and Q13 ¼ 1:62 GPa and for 90�, Q11 ¼ 9:69 GPa and Q13 ¼ 2:54 GPa. In Fig. 1, imag-

inary part of the wavenumbers is plotted in horizontal plane and real part in the vertical plane. Further, the

imaginary part of the wavenumbers for 0� and 90� are plotted in the positive side, whereas for 45� it is
plotted in the negative side, for distinction. Two different gm values are taken. The linear variation of the

real part of the wavenumbers are for gm ¼ 0 and rest of the plots are for gm ¼ 10. As discussed previously,

slope of the linear portion depends upon Q33 and Q55 and as they are equal for all the ply-angles, this part is

common for all the ply-angles. The difference comes in the imaginary part and cut-off frequencies. Two

different cut-off frequencies are seen in the figure for each ply-angle, where the largest value is for 0� ply-
angle because of its largest Q11. Further, the shear cut-off frequency is same for all the ply-angles as Q55 is

equal in all the cases.

Once, the required wavenumbers k are obtained, for which the wave matrix W is singular, we can
evaluate u0 through the solution of
u0
w0

� �
¼
X4
n¼1

An

Bn

� �
e�jknz: ð14Þ
Above expression involves a total of 8 constants. However, they are inter-dependent and only four
independent constants exist. This can be seen by substituting the solution in Eq. (10), which yields

W11An þ W12Bn ¼ 0, or, W21An þ W22Bn ¼ 0. Since, for the solved values of the wavenumber k, the wave

matrix is singular, these two conditions are not linearly independent, and anyone of the two conditions can

be used to express one of the constants in terms of the another. However, in doing so, it should be known

apriori, which elements of the wave matrix are not zero. Only those elements can be used as denominators

while establishing the relation. This approach is followed in more recent works (Roy Mahapatra et al.,

2000; Roy Mahapatra and Gopalakrishnan, 2003a,b) in formulating one dimensional elements. However,

for more complicated problems involving more than three variables (as to be encountered in plates and
shells), the method becomes very tedious and some alternative is necessary. It is to be noted that for iso-

tropic materials this problem does not arise at all because of the introduction of Helmh€oltz decomposition.

In short, for problems with more than two independent variables, a different procedure is necessary. We

propose here a formulation technique which will be a general one, applicable to any structural systems with

no Helmh€oltz decomposition. Here, the displacement field for the frequency xn and wavenumber gm is

written as
unm ¼ R11C1e
�jk1x þ R12C2e

�jk2x þ R13C3e
þjk1x þ R14C4e

þjk2x; ð15Þ
wnm ¼ R21C1e
�jk1x þ R22C2e

�jk2x þ R23C3e
þjk1x þ R24C4e

þjk2x; ð16Þ
where Rij are amplitude coefficients to be determined and they are called wave amplitudes. In the works of
Roy Mahapatra et al. (2000) and Roy Mahapatra and Gopalakrishnan (2003a,b), the wave amplitudes

are obtained by using the wave matrix W. As outlined earlier, for isotropic material (Rizzi and Doyle,

1991), Rij s are explicitly known. However, for anisotropic material they are to be computed numerically.

For each wavenumber kinm (i ¼ 1; . . . ; 4), the ith column of the wave amplitude matrix R, satisfy
½WðkinmÞ�
R1i

R2i

� �
nm

¼ 0

0

� �
; ð17Þ
since none of the constants Ci; i ¼ 1; . . . ; 4, is zero. Eq. (17) suggests where to look for the elements of the

wave amplitude matrix. They are exactly the elements of the null space of W. Since, WðkinmÞ is singular for
each kinm, the null space of each WðkinmÞ has a non-trivial element and that will serve the purpose of the ith
column of R.
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To find the element of the null space of W, singular value decomposition (SVD) can be utilized which

states that, for any rectangular matrix A of complex entries (Golub and Loan van, 1996), there exist unitary

matrices U and V and diagonal matrix S, such that A ¼ USVH, where ð�ÞH denotes Hermitian conjugate.

The entries of S are the singular values. The most important property of these unitary matrices that is useful
here is that the columns of V that correspond to zero singular values (zero diagonal elements of S) are

elements of basis of the null space of A. Since, all we need is an element of the null space we can as well take

the elements of the basis itself. Utilizing this fact, SVD of W is performed for each value of kinm, xn and gm
to get Rnm.

Once the four wavenumbers and wave amplitudes are known, the four partial waves can be constructed

and the displacement field can be written as a linear combination of the partial waves. Each partial wave is

given by
ai ¼
ui
wi

� �
¼ R1i

R2i

� �
e�jkiz sinðgmxÞ

cosðgmxÞ

� �
ejxnt; i ¼ 1; . . . ; 4; ð18Þ
and the total solution is
u ¼
X4
i¼1

Ciai ð19Þ
It is evident that this method is applicable for wave matrix of any size and thus suitable for plate and shell
formulation. There is another advantage of this method. If the spectrum relation is solved using companion

matrix method, then it is not possible to keep track of the each individual wavenumbers and R matrix

formulation by methods proposed by Roy Mahapatra et al. (2000) and Roy Mahapatra and Gopala-

krishnan (2003a,b), fails. In the present method, there is no need to keep track of each individual wave-

number. As the element of the null space is computed numerically, rather than analytically, there is no need

to check for the non-trivial elements of wave matrix.

2.1. Finite Layer Element (FLE)

Once the solutions of u and w are obtained in the form of Eqs. (15) and (16) for each value of xn and gm,
the shape functions required for element formulation can be formed in the following way. The solution of

unm and wnm (Eqs. (15) and (16)) contains four independent constants (Ci) which are to be replaced by the

nodal displacements of node 1 and node 2, i.e., u1nm, w1nm, u2nm and w2nm. For that, the expressions of unm and

wnm are evaluated at node 1 (z ¼ 0) and node 2 (z ¼ L) and equated to the nodal displacements. This

operation yields a relation between nodal displacements and the constants Ci as
fu1nm v1nm u2nm v2nmg T ¼ ½T1nm� fC1 C2 C3 C4gT; ð20Þ
i.e.,
fûgnm ¼ ½T1�nmfCgnm; ð21Þ
where f�gT denotes transpose of a vector. The matrix T1nm consists of the elements of Rnm suitably multi-

plied by e�jkinmL, i ¼ 1; . . . ; 4, which physically is the matrix of coordinate transformation between the

generalized coordinate and the physical coordinate system.

The elements are essentially edge elements and tractions are specified at node 1 and node 2, as shown in

Fig. 2. The tractions are balanced by the internal stresses at the surfaces by Cauchey’s principle which

states, ftg ¼ ½r�fng, t is the vector of surface tractions, ½r� is the Cauchey’s stress matrix and fng is the

vector of surface normals. As the edge 1 and 2 are normal to the Z axis, the surface normals at node 1 and 2
are given as f0;�1g, respectively, which in turn states that, at node 1, traction in the direction of X , tx, is
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�rxz and traction in the direction of Z, tz, is �rzz and at node 2, tx ¼ rxz and tz ¼ rzz. Relation between the

normal stress rzz and shear stress rxz to the strains, and in turn, to the displacements can be established by

substituting Eq. (2) in Eq. (3), which yields
rxx ¼ Q11ux þ Q13wz; rzz ¼ Q13ux þ Q33wz; rxz ¼ Q55ðuz þ wxÞ; ð22Þ
Substituting Eqs. (15) and (16) in Eq. (22), the stresses can be related to the unknown constants Ci. If the

traction–stress relation is utilized and the tractions are evaluated at node 1 and node 2, then a relation is

established between tractions at node 1 and 2, t̂ ¼ ftx1; tz1; tx2; tz2g and the unknown constants C, as
f̂tgnm ¼ ½T2�nmfCgnm: ð23Þ
Explicit forms of T2nm and T1nm are given in Appendix A (Eqs. (A.1) and (A.2), respectively). Using Eqs.

(21) and (23), nodal traction t̂nm can be related to the nodal displacement ûnm as
f̂tgnm ¼ ½T2�nm½T1��1

nmfûg ¼ ½K̂�nmfûgnm; ð24Þ
where K̂nm is the (4 · 4) element stiffness matrix for xn and gm. It is important to note that, this matrix

represents the dynamics of a whole layer of any length L at frequency xn and horizontal wavenumber gm.
Consequently, this small matrix of size 4· 4, acts as a substitute of the global stiffness matrix of FE
modeling, which in general, will be of much larger size, depending upon the thickness of the layer.

2.2. Infinite Layer Element (ILE)

While formulating the FLE, both forward and backward propagating waves are considered. However,

another element can be computed where only the forward propagating waves are considered which means
no reflection will come back from the boundary. This element is also called throw-off element (as it acts as a

conduit to throw away energy from the system) and is very effective in modeling infinite domain in Z
directions. This element is also used to impose absorbing boundary conditions or to introduce maximum

damping in the structure. The element has only one edge where displacements are to be measured and

tractions are to be specified (see Fig. 2a). The displacement field for this element (at xn and gm) is
unm ¼ R11C1nme
�jk1z þ R12C2nme

�jk2z; ð25Þ

wnm ¼ R21C1nme
�jk1z þ R22C2nme

�jk2z; ð26Þ
where it is assumed that k1 and k2 are the positive roots of Eq. (12). Following the same procedure as before,

displacement at node 1 can be related to the constants Ci; i ¼ 1; . . . ; 2 as
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fûgnm ¼ ½T1�nmfCgnm: ð27Þ
Similarly, tractions at node 1 can be related to the constants as
ftx1 ty1g T

nm ¼ ½T2�nm fC1nm C2nmg T
; i:e:; f̂tgnm ¼ ½T2�nmfCgnm: ð28Þ
Explicit forms of the matrix T1 and T2 are given in Appendix A (Eq. A.2). The tractions at node 1 can be

related to the displacements at node 1 as
f̂tgnm ¼ ½T2�nm½T1��1

nmfûg ¼ ½K̂�nmfûgnm; ð29Þ
where K̂nm is the (2 · 2) element stiffness matrix.

2.3. Expressions of stresses and strains

From the displacement field (Eqs. (15) and (16)) and strain–displacement relation (Eq. (2)), the matrix of

strain–nodal displacement relation and stress–nodal displacement relation can be established as
� ¼ BT�1
1 û; r ¼ QBT�1

1 û; � ¼ f�xx; �zz; �xzg; r ¼ frxx; rzz; rxzg; ð30Þ

where the elements of B (size 3 · 4) are described in terms of the wave amplitude matrix R and given in

Appendix A (Eq. (A.3)). The Q is the elasticity matrix, which is also given in Appendix A (Eq. (A.4)).

2.4. Prescription of boundary conditions

Essential boundary conditions are prescribed in the usual way as is done in FE methods, where simply

the nodal displacements are arrested or released depending the nature of the boundary conditions. The
applied tractions are to be prescribed at the nodes. It is assumed that the loading function (for symmetric

loading) can be written as
F ðx; z; tÞ ¼ dðz� zjÞ
XM
m¼1

am cosðgmxÞ
 ! XN�1

n¼0

f̂neðjxntÞ

 !
; ð31Þ
where d denotes the Dirac delta function, zj is the Z coordinate of the point where load is applied and the z
dependency is fixed by suitably choosing the node where the load is prescribed. No variation of load along

Z direction is allowed in this analysis. f̂n are the fourier transform coefficients of the time dependent part of
the load which are computed by FFT and am are the fourier series coefficients of the x dependent part of the
load.

There are two summations involved in the solution and two associated windows, one in time T and one

in space Lx. The discrete frequencies xn and discrete horizontal wavenumber gm are related to these win-

dows by the number of data N and M chosen in each summation, i.e.,
xn ¼ 2np=T ¼ 2np=ðNDtÞ; gm ¼ 2ðm� 1Þp=Lx ¼ 2ðm� 1Þp=ðMDxÞ; ð32Þ

where Dt and Dx are the temporal and spatial sample rate, respectively.

2.5. Propagation of Lamb waves

As defined earlier, Lamb waves are guided waves (see Fig. 3(a)), propagating in a free plate and the two

lateral guiding surfaces are traction free. There are two main approaches to the analysis of the Lamb waves.

The first one is the method of potentials. In this method, Helmh€oltz decomposition of the displacement field

is obtained and the governing equations are uncoupled and written in terms of the potentials. Solutions are
sought for these potentials, which contains four arbitrary constants. The displacement field and the stresses
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Fig. 3. Propagation and modes of Lamb wave: (a) propagation of Lamb waves, (b) anti-symmetric mode and (c) symmetric mode.
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are expressed in terms of the potentials and the imposition of the tractions free upper and lower surfaces

generates the necessary condition for finding the unknown constants and the dispersion equation, (see

Rose, 1999). The advantage of this method is that the symmetric and anti-symmetric modes can be isolated

during formulation, (see Fig. 3(b) and (c)).

The second approach is the partial wave technique, which is discussed below in detail. In the SLE
formulation, there are two summations in the solutions. The outer one is over discrete frequencies and the

inner one is over discrete horizontal wavenumbers. Each partial wave of Eq. (19) satisfies the governing

PDEs (Eq. (4)) and the coefficients Ci as a whole satisfy any prescribed boundary conditions. As long as the

prescribed natural boundary conditions are non-homogeneous, no restriction upon the horizontal wave-

number g is imposed and that leads to double summation solution of the displacement field. However, that

is not the case for traction free boundary conditions on the two surfaces, which are the necessary condition

for generating Lamb waves. The governing discrete equation for finite layer (Eq. (24)) in this case becomes
½K̂ðgm;xnÞ�nmfûgnm ¼ 0; ð33Þ
and we are interested in a non-trivial u. Hence, the stiffness matrix K̂ must be singular, i.e.,

detðK̂ðgm;xnÞÞ ¼ 0, which is the required relation between gm and xn. Since, xn is made to vary indepen-

dently, above relation must be solved for gm to render the stiffness matrix singular, i.e., gm cannot vary

independently. More precisely, for each value of xn there is a set of values of horizontal wavenumber gm
(one for each mode) and for each value of xn and gm there are four vertical wavenumbers knm. The difference
in this case is in the value of gm, which is to be solved for, as opposed to its expression in Eq. (32) and M is

the number of Lamb modes considered rather than Fourier modes. Now, for each set of
ðxn; gm; knmlÞ; l ¼ 1; . . . ; 4, K̂ will be singular and Cl; l ¼ 1; . . . ; 4 will be in the null space of K̂. Now using

Eq. (19), total solution can be constructed. Following the normal practice, the traction free boundary

conditions are prescribed at z ¼ �h=2. Using Eq. (30), the governing equation for Ci and gm becomes
½W2ðgm;xnÞ�fCgnm ¼ 0; C ¼ fC1;C2;C3;C4g; ð34Þ
where W2 is another form of the stiffness matrix K and is given in Appendix A. The dispersion relation is

detfW2g ¼ 0, which will yield gmðxnÞ and the phase speed for Lamb waves cnm will be given by xn=gm. Once

the values of gm are known for the desired number of modes, the elements of Cnm are obtained by the

technique of SVD as described earlier to find the elements of R. Summing over all the Lamb modes, the

solution for each frequency is obtained.
3. Numerical examples

The developed spectral element is validated first to establish its accuracy and efficiency with respect to

conventional 2D FE solutions. Next, stress wave propagation through layered anisotropic media is stud-
ied. Subsequently, propagation of Lamb waves through layered media is studied. Finally, the present
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formulation is utilized to show its advantage in solving inverse problems such as force identification from

the measured response.
3.1. Verification of the SLE

Wave propagation in asymmetrically stacked composite layer is studied in this section and the results are

compared with 2D FE solutions. The material taken is GFRP composites, which has following material

properties: E1 ¼ 144.48 GPa, E3 ¼ 9.63 GPa, G13 ¼ 4.13 GPa, m13 ¼ 0:3, m12 ¼ 0:02 and q ¼ 1389 kg/m3.
The ply-sequence considered is ½0�10=90�10=0�10�, where each laminae is 0.01 m thick. This large thickness is

chosen to differentiate between incident and reflected pulse, although any layer thickness can be chosen.

The layered system is impacted by a high frequency loading, as shown in Fig. 4. The time history of the load

along with its spectrum is shown in Fig. 5. As is seen there, the load is of unit magnitude and 50 ls duration
with an initial padding of 100 ls. The load has high frequency content (around 46 kHz). This kind of high

frequency load excites many natural modes and the resulting response is suitable linear combination of all

these modes. Mode superposition method of analysis for this kind of loading will be computationally too

expensive and that is where the present element and formulation are most useful.
The load is applied at the centre of the top layer first in Z direction, which generates primarily QP wave

and then in X direction, which generates primarily QSV wave. Response of the structure is measured at

several locations along the surface and interfaces. For FE analysis, the layer is modeled with 3600, 3 noded

plane-strain FEs. In comparison, there are only 3 FLEs in the spectral model. The FE model results a

global system matrix of size 3656 · 126, whereas, the spectral model results a global system matrix (dynamic

stiffness matrix) of size 6 · 6. While solving via FE analysis, Newmark time integration is adopted with a

time increment of 1 ls which means, to get a time history up to 600 ls, the global matrix need to be back-

substituted 600 times. For the spectral analysis, the load is sampled at 48.83 Hz with 2048 (N in Eq. (31))
FFT points. Further, for spatial variation, 32 fourier series coefficients (M in Eq. (31)) are considered. For

concentrated load all the ams are equal to 2=XL, where XL is the window length in X direction, here taken as

1.0 m, as per the FE model. Since, the time domain response is real, the computation of displacements (or

velocities) needs to be carried out only up to the Nyquist frequency. Hence, the global stiffness matrix need

to be inverted 1025 · 32 times. This computational requirement is many order smaller compared to the

requirement of the FE analysis. Further, a typical simulation in FE takes 110 s of CPU time, whereas, a SE

run takes 14 s in Compaq Alpha Server ES40 with DEC compiler.

Before discussing the velocity histories (and subsequently plotted stress histories) few points need to
considered. When a velocity wave encounters a stiffer zone the reflected wave has equal magnitude with

opposite sign of the incident wave. As opposed to that, when the wave encounters a zone of comparatively

lower stiffness, the reflected wave has equal amplitude with same sign of the incident wave. These
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Fig. 4. Layer model for verification.
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Fig. 5. Load applied for verification study.

Fig. 6. QP wave at the surface (point 1), solid line––SE, dashed line––2D FE.
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Fig. 7. QP wave at the interface, solid line––SE, dashed line––2D FE.

Fig. 8. QP wave at the interface, solid line––SE, dashed line––2D FE.
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Fig. 9. QSV wave at the surface, solid line––SE, dashed line––2D FE.

Fig. 10. QSV wave at the surface, solid line––SE, dashed line––2D FE.
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phenomena are best visible in the reflections from the fixed end (infinite stiffness) and free end (zero

stiffness) of a structure. However, reflected waves are also generated at the interfaces of laminates because

of mismatch in stiffness and hence in impedance. In the present model, propagation is considered in the

direction of ply-stacking and there is nominal change in stiffness in that direction, due to change in laminae
angle. Hence, the magnitude of the reflected waves from the interface will not be large enough to be visible,

in comparison to the boundary generated waves. Thus whatever reflections are present in the velocity or

stress history are solely due to reflections from the boundary.

For the load applied in Z direction at point 1, Z directional velocity _w, is measured at points marked by

1, 4, and 5. The velocity history of these nodes are plotted in Figs. 6–8. In Fig. 6, peak at 100 ls is the direct
effect of the load. For this kind of loading the propagating wave is essentially QP wave. In this case, the

inverted peak at around 3.2 · 10�4 s is the reflection from the fixed end, i.e., at z ¼ 0:3 m. Again at the fixed

end, the wave gets inverted and shows up at around 5.4 · 10�4 s. This figure also shows the excellent
agreement between the FE and SLE responses.

Next, the _w history at first interface (z ¼ 0:1 m, point marked by 4) is plotted in Fig. 7. The response in

this case does not start at 100 ls as before, but at 130 ls. This time is taken for propagation in the first

layer, i.e., 0� laminate. Subsequent reflections at around 2.9 · 10�4 s and 3.6 · 10�4 s are due to reflections

from the fixed edge (z ¼ 0:3 m) and free edge (z ¼ 0:0 m), respectively. Further, the peak at around

5.0 · 10�4 s is the second reflection from the fixed edge.

For the _w history measured at second interface (z ¼ 0:2 m, point marked by 5) and plotted in Fig. 8 the

main peak comes down to 1.67 · 10�4 s because of large travelling distance. The QP wave velocity at 90�
laminate is lesser than that in 0� laminate and hence this increase (above 1.6 · 10�4) in propagation time.

There are reflections from the fixed end (inverted peak at around 2.46 · 10�4 s), reflections from the free end

(inverted peak at 4.0 · 10�4 s) and the second reflections from the fixed end (peak at around 4.7 · 10�4 s).

The SLE captures these reflections quite well and except at the last reflection, the response matches sat-

isfactorily with FE response.

Next, the same load is applied at point 1 in X direction. For this load primarily QSV wave is generated.

There will be no wave at the impact point and X directional velocity _u is measured at the surface points 2

and 3 and plotted in Figs. 9 and 10, respectively. In both the cases several reflections from the fixed ends are
visible. As before, good agreement between FE and SLE responses can be observed. These responses

establish the developed SLE in terms of accuracy, efficiency and cheap cost of computation.

3.2. Propagation of stress waves in layered media

In this section, the formulated element is employed to study the stress wave propagation in layered

media, which is very important from structural health point of view. In particular, inter-laminar normal

(rzz) and shear (rxz) stresses are of great concern as they are root cause for delamination in composite. The

same layered system of previous example is taken in this study. Tractions are specified in both X and Z
direction, where the same load history (Fig. 5) is applied. It is to be noted that, for stress wave, fixed end

generates a reflected wave of having same magnitude and sign of the incident wave, and free end generates a
reflected wave of same magnitude but opposite sign of the incident wave.

First, the traction is applied in Z direction and normal stress rzz is measured at point 1, 4 and 5. The

normalized (with respect to the maximum magnitude in each case) measured stresses are shown in Fig. 11.

As is seen there, at the surface the stress history profile is exactly the same as the applied traction, which is

expected. However, at the interfaces the initial peak appears after a certain interval of time due to finite

propagation speed. Further, multiple reflections are visible at the interfaces, which results both tensile and

compressive stresses. These stresses will be responsible for delamination or matrix cracking, if they exceed

the allowable limit. For the stress wave measured at the second interface, the first positive peak is the
reflection from the fixed end and subsequent negative peak is the reflection from the free end. Similarly, the



Fig. 11. Stress wave propagation, rzz due to tz.

Fig. 12. Stress wave propagation, rxz due to tx.
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Fig. 13. Stress wave propagation, rxz due to tz and rzz due to tx.
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Fig. 14. Lamb wave modes for 0� ply-angle.
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second negative peak is the second reflection from the fixed end, whereas, the second positive peak is the

second reflection from the free end. Similar traits are visible in the stress wave measured at the second

interface (z ¼ 0:2 m). The shear stresses generated at the interfaces due to this load is plotted in the top two

subplots of Fig. 13. No shear stress is generated at the top surface. Although their magnitude is very less
compared to the normal stresses, their existence may prove fatal sometimes. Most importantly, reversal of

stresses at the interfaces can cause severe damage to the structure.

Next, the load is applied in X direction and shear stresses at the surface and interfaces are measured at a

X coordinate of 0.2 m and plotted in Fig. 12. As usual, the surface stress wave is same as the applied stress,

whereas, the main interface wave peaks are of opposite sign. Further, the reflections from the fixed and free

ends follow the same trait of the normal stress. The normal stresses generated at the interfaces due to this

traction is plotted in the lower two subplots of Fig. 13. Again several reversal of stresses are visible, par-

ticularly for the second interface.
Above example shows the general stress pattern that exists in a layered media for applied normal and

shear tractions and effect of boundaries on the conversion of these stresses. In particular, boundaries

generate stress waves which may be as strong as the original pulse. Further, stress waves can be trapped in a

layer, which may cause severe damage in absence of low dissipation rate.
3.3. Propagation of Lamb waves in layered media

A uni-directional laminae of 2 mm. thickness is considered for the study of propagating Lamb wave

modes. Analysis is performed for three different fibre-directions are considered, 0�, 45� and 90�. Material
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properties of the composite are as taken before. The dispersion relation (relation between cp ¼ x=g and x)
is usually left in the form of a determinant equal to zero because of its complexity. Hence, solution for this

kind of implicit equation requires special treatment. The solution in particular is multi-valued, unbounded

and complex (although the real part is of interest). One way to solve these equations is to appeal to the
strategies of non-linear optimization, which are based on non-linear least square methods. There are several

choices of algorithms, like trust-region dogleg method, Gauss–Newton method with a line search, or a

Levenberg–Merquardt method with line-search. Here, MATLAB function fsolve is used and the default

option for medium scale optimization––the trust-region dogleg method is adopted, which is a variant of the

Powell’s dogleg method (Powell, 1970).

Apart from the choice of algorithm there are other subtle issues in root capturing for the solution of

wavenumbers as the solutions are complicated in nature. Moreover, except the first one or two modes, all

the other roots escape to infinity at low frequency. For isotropic materials, these critical frequencies are
known below which the phase speed is infinite. However, no expressions can be found for anisotropic

materials and most of the times, the modes (solutions) should be tracked backward, i.e., from higher

frequency to lower frequency. In general two strategies are essential to capture all the modes within a

given frequency band. Initially, the whole region should be swept for different values of the initial guess,

where the initial guess should remain constant for the whole range of frequency. These sweeping opens

up all the modes in that region, although they are not completely traced. subsequently, each individual

mode should be followed to the end of the domain or to a pre-set high value of the solution. For this

case, the initial guess should be changed for each frequency to the solution of the previous frequency
step. Also, sometimes it is necessary to reduce the frequency step in the vicinity of high gradient of the

modes. Once the Lamb modes are generated they are fed back into the frequency loop to generate the

frequency domain solution of the Lamb wave propagation, which through IFFT produces the time

domain signal. As the Lamb modes are generated first, they need to be stored separately. To this end

data are collected from the generated modes at several discrete points in the whole range of frequency.

Next, a cubic spline interpolation is performed for a very fine frequency step within the same range.

While generating the time domain data, interpolation is performed from these finely graded data to get

the phase speed (hence, g).
To get the time history of propagating Lamb waves a modulated pulse of 200 kHz center frequency is

applied at one end of an infinite plate and X and Z velocities are measured for a propagating distance of

320h, where h is the thickness of the plate. While studying the time domain representation, the thickness

of the plate is taken as 10 mm, which amounts to a frequency-thickness value of 2. This increased

thickness is taken because for this value, atleast three modes will be excited in all the cases, as shown by

their respective dispersion curves (Figs. 14, 17 and 20). To get the same frequency-thickness value

otherwise, we have to increase the frequency content of the load to 750 or 800 kHz, which is compu-

tationally prohibitive.
In all the plots of Lamb modes the abscissa is given in terms of frequency times the thickness. Fig. 14

shows the first 10 Lamb modes for fibre angle 0�. As is seen in there, first anti-symmetric mode (Mode 1)

converges to a value of 1719 m/s in a range of 1 MHzmm, where all the other modes converge at various

later values of frequency. In analogy to the isotropic case, this is the velocity of Rayleigh surface waves in 0�
fibre laminae. The first symmetric mode (Mode 2) starts above 10 000 m/s and drops suddenly at around 1.3

MHzmm to converge to 1719 m/s, before which it has fairly constant value. All the other higher order

modes escape to infinity at various point in the frequency range. Also the symmetric and anti-symmetric

pair of each mode escape almost at the same frequency.
Propagation of these modes are plotted in Figs. 15 and 16 for first three modes ða0; s0 and a1Þ, here

referred as Mode 1, 2 and 3 respectively. In Fig. 15, the Z velocity history is plotted, whereas in Fig. 16

the X velocity history is plotted. The figures readily show the different propagating modes, each corre-

sponds to one blob. It is to be noted that, wave propagation velocity is given by the group speed (and
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not the phase speed). Hence, Fig. 14 will not help us to predict the appearances of different modes.

However, as Fig. 15 and 16 suggest, mode 2 has a lower group speed than mode 1 and mode 3 has a

group speed much higher than both mode 1 and 2. One difference in the _u and _w history can be observed.

For _u, the higher mode generates velocity of comparatively lesser magnitude, whereas, for _w, the mag-
nitude is highest.

Next the fibre angle is changed to 45� and the Lamb modes are plotted in Fig. 17. Here, the phase

velocity of Mode 1 (a0) is lower than the previous values for 0� (1690 m/s). Also, initial phase velocity of

Mode 2 (s0) has come down to less than 6000 m/s in comparison to its 0� counterpart (10 000 m/s).

Further, critical frequencies of all the higher modes are lower compared to the previous case. Also there

are considerable differences in this critical frequencies for each pair of symmetric and anti-symmetric

modes, which is absent 0� case. Moreover, number of modes also is increased to 11 from 10 in the

previous case. The time domain representation of the propagating waves are shown in Figs. 18 and 19. In
this case, however, the second mode has higher group velocity than the first mode and the third mode has

the highest group speed.

Finally, the fibre angle is changed to 90� and the resulting mode shapes are plotted in Fig. 20. The

shifting of the modes to the left of the figure continues as the number of modes is increased to 12.

Further, the first symmetric mode has come down to 2600 m/s and the first anti-symmetric mode is

reduced to a converged speed of 1510 m/s. For this modes the propagating Lamb wave is plotted in Fig.

21 and 22 for _u and _w, respectively. As the figures suggest, mode 2 again has lower group speed

compared to mode 1 and mode 3 has higher speed than both mode 1 and 2. However, the difference
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Fig. 18. Lamb wave propagation for 45� ply-angle, L ¼ 320h.
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between the mode 3 group speed and mode 2 group speed is not very high as opposed to the previous

cases.
3.4. Force reconstruction from truncated response

The basic idea of force identification in frequency domain analyze is presented below. Since the whole

spectral formulation is in the frequency/wavenumber domain, the response is related to the input through

the transfer function in the frequency/wavenumber domain as
~Y ðxn; gmÞ ¼ ~Hðxn; gmÞ~X ðxn; gmÞ; ð35Þ
where ~X ðxn; gmÞ is the transformation of the input (say, load), ~Y ðxn; gmÞ is the transform of the output
(typically, velocity, strain etc.), and ~Hðxn; gmÞ is the system transfer function. Now, input force can be

obtained easily by dividing the transform of the response by the transfer function, that is,
~X ðxn; gmÞ ¼ ~Y ðxn; gmÞ= ~Hðxn; gmÞ: ð36Þ
Thus, if the response is known at some point, then the disturbance that caused it can be computed. This is

one of the distinct advantage of the spectral approach in its ability to solve inverse problems.
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Fig. 21. Lamb wave propagation for 90� ply-angle, L ¼ 320h.
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In general, ~Y ðxn; gmÞ will be experimental data, typically transform of strain history (Rizzi, 1989). In
this work, FE analysis output is taken as a replacement of experimental output and when this response

is fed into the spectral solver the applied force can be reconstructed. The experimental outputs are

always truncated at some point. This is the reason why the FE output is also truncated to simulate the

experimental output. It is to be noted that, the present model is a second order system, where in most

of the cases the waves are non-dispersive in nature. The tracking of reflection is quite simple in such

systems.

The layered system of the verification study is taken here and the same load is applied at point 1.

The FE signal taken as a substitute for experimental output is the response of Fig. 6, shown in dashed
line. This FE signal is truncated at three different times (tc), 1000, 500 and 250 ls. The truncated re-

sponses are shown in Fig. 23. When these responses are given as input in the spectral solver force

history comes as output. These histories are plotted in Fig. 24 for the three different cut-off points. As is

seen in the figure, for the truncation time of 1000 ls, reconstructed force history matches almost exactly

with the original force history. The second and third truncated signals (tc ¼ 500 and 250 ls, respec-

tively) also generate the initial form of the load history quite accurately. However, the second truncated

signal registers an inverted peak at around 700 ls and the third signal shows another extra peak at

around 350 ls, which are not present in the original history. Surely, these responses arise because of the
removal of later part of the FE response. Thus, the peak at 700 ls arise due to removal of second and

subsequent reflections from the fixed end and the peak at 350 ls is due to the removal of the first

reflection from the fixed end. Hence, if it is known that there is only one impact load and only the
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duration and magnitude of that load is desired, FE response (or the experiment output) can be trun-

cated at any point after the main peak. This exercise further demonstrates the inherent efficiency of the

spectral formulation in source reconstruction.
4. Conclusion

A spectral element is developed to analyze wave propagation in layered media. The element captures the

essential response of layered system to impact loading quite efficiently compared to conventional FE
modeling and analysis. Stress state within a multi-layered system reveals trapping of energy and multiple

reversal of stresses, which may prove fatal to the safety of the structure. Further, Lamb modes are com-

puted for uni-directional composite laminate and effect of different modes on time domain response is

investigated for different fibre angles. It is shown that the increase of ply-angle increases number of active

modes within a defined frequency range, reduces escape frequency (frequency where the phase speed be-

comes infinity) and reduces phase speeds. Finally, inherent advantages of spectral element formulation is

utilized to reconstruct applied force history from truncated responses. It has been shown that the later part

of the response does not influence the main loading pulse and it is possible to have a fair approximation of
the applied pulse from a early truncated signal.



Fig. 24. Reconstructed force history for several truncated responses, solid line––original force history, dashed line––reconstructed force

history.
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Appendix A

The matrices T1 and T2 for the FLE (used in Eqs. (21) and (23)):
T1 ¼

R11 R12 R13 R14

R21 R22 R23 R24

R11e
ð�jk1LÞ R12e

ð�jk2LÞ R13e
ðþjk1LÞ R14e

ðþjk2LÞ

R21e
ð�jk1LÞ R22e

ð�jk2LÞ R23e
ðþjk1LÞ R24e

ðþjk2LÞ

2
66664

3
77775; ðA:1Þ

T2ð1; pÞ ¼ �Q55ð�jR1pkp � gR2pÞ;

T2ð2; pÞ ¼ jQ33R2pkp � Q13gR1p;

T2ð3; pÞ ¼ Q55ð�jR1pkp � gR2pÞeð�jkpLÞ

T2ð4; pÞ ¼ f�jQ33R2pkp þ Q13gR1pgeð�jkpLÞ;
where p ranges from 1 to 4, k3 ¼ �k1 and k4 ¼ �k2.
For the ILE, T1 and T2 can be obtained by truncating the matrices of FLE. In particular,
T1ðILEÞ ¼ T1ðFLEÞð1 : 2; 1 : 2Þ; T2ðILEÞ ¼ T2ðFLEÞð1 : 2; 1 : 2Þ: ðA:2Þ
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The matrix of strain–displacement relation, B is given by
Bð1; pÞ ¼ R1pge
�jkpz; Bð2; pÞ ¼ �jR2pkpe�jkpz;

Bð3; pÞ ¼ �ðjR1pkp þ R2pgÞe�jkpz;
ðA:3Þ
where z is the point of strain measurement. The elasticity matrix Q is
Q ¼
Q11 Q13 0

Q13 Q33 0

0 0 Q55

2
4

3
5: ðA:4Þ
Elements of W2 (appeared in Eq. (34)) are
W2ð1; pÞ ¼ ðQ11Rð1; pÞg� jQ13Rð2; pÞkpÞejk
h=2
p ;

W2ð2; pÞ ¼ ðQ11Rð1; pÞg� jQ13Rð2; pÞkpÞe�jkh=2p ;

W2ð3; pÞ ¼ Q55ð�Rð1; pÞkp þ jRð2; pÞgÞejk
h=2
p ;

W2ð4; pÞ ¼ Q55ð�Rð1; pÞkp þ jRð2; pÞgÞe�jkh=2p :
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